Cover Page March-2017-Advanced Materials Letters

Advanced Materials Letters

Volume 8, Issue 3, Pages 187-195, March 2017
About Cover


Review of environmental life cycle assessment studies of graphene production

Rickard Arvidsson*

Environmental Systems Analysis, Chalmers University of Technology, Rännvägen 6, Gothenburg, 41296, Sweden

Adv. Mater. Lett., 2017, 8 (3), pp 187-195

DOI: 10.5185/amlett.2017.1413

Publication Date (Web): Jan 28, 2017

E-mail: rickard.arvidsson@chalmers.se

Abstract

Environmentally benign production processes are required in order to ensure a sustainable graphene supply. Life cycle assessment (LCA) is an established method for assessing life cycle environmental impacts of products and production processes. In this paper, life cycle impacts of five production processes for graphene are reviewed: Chemical reduction of graphite oxide, ultrasonication exfoliation, thermal exfoliation, chemical vapour deposition, and epitaxial growth. The reduction step, including the production of the reduction agent hydrazine, was the main contributor for most impacts in the chemical reduction of graphite oxide. Production of the solvent diethyl ether was the step that contributed the most for ultrasonication exfoliation, so solvent recovery is advised. For thermal exfoliation, microwave heating was the step that contributed the most to environmental impacts of graphene nanoplatelets. For chemical vapour deposition, the methane feedstock production step contributed the most, but methane recovery could reduce the energy use considerably. The environmental impacts of epitaxial graphene were dominated by electricity use for production of the silicon wafer substrate, which means that a ‘greener’ electricity mix can reduce impacts considerably. Overall, it is shown that graphene need not be an energy-intensive material compared to conventional materials used in society today.

Keywords

Graphene, LCA, environmental impacts, resource use, energy use.

Current Issue

9th Anniversary of Advanced Materials Letters: Progress and Opportunities


Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries


Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces


Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles


Visualization of mechanical loads with semiconductor nanocrystals 


Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide


Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection


Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory


Innovative silicon compatible materials for light emitting devices  


Graphene micromesh for transparent conductive films application 


Applications of nano-scale Cirrus DopantTM to improve existing coatings


Chitin nanofibrils in renewable materials for packaging and personal care applications


Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics


Previous issues

Artificial intelligence and machine learning empowering the mass medicine

Piezo-therapy in cancer: Current research and perspectives

Magnetic microwires for sensor applications

A fundamental study on the mechanistic impact of repeated de- and rehydration of Ca(OH)2 on thermochemical cycling in technical scale

Fabrication and characterization of nano-bridge Josephson junction based on Fe0.94Te0.45Se0.55 thin film

Riboflavin-UVA gelatin crosslinking: Design of a biocompatible and thermo-responsive biomaterial with enhanced mechanical properties for tissue engineering

Broadband and fast photodetectors based on multilayer p-MoTe2/n-WS2 heterojunction with graphene electrodes

Ionic liquid [BMIM][Cl] immobilized on cellulose fibers from pineapple leaves for desulphurization of fuels

Synthesis and role of co-dopants (alkaline earth divalents and halides) on the photoluminescence of Eu2+ doped BaAl2O4 phosphor

Metal oxide (V2O5) incorporated fly ash based geopolymer for better sustainable engineering composites

Highly efficient storage of solar gains using aluminum foam heat exchangers  

Green fabrication of zinc oxide nanospheres by aspidopterys cordata for effective antioxidant and antibacterial activity

Effect of diamantane on the thermal stability of cryomilled aluminum alloy

Upcoming Congress

Knowledge Experience at Sea TM