Zeolite 4A Filled Poly (3, 4-ethylenedioxythiophene): (polystyrenesulfonate) (PEDOT: PSS) And Polyvinyl Alcohol (PVA) Blend Nanocomposites As High-k Dielectric Materials For Embedded Capacitor Applications

M. K. Mohanapriya1, Kalim Deshmukh2, M. Basheer Ahamed2, K. Chidambaram1, S. K. Khadheer Pasha1*

1Department of Physics, School of Advanced Sciences, VIT University, Vellore 632014, Tamilnadu, India

2Department of Physics, B. S. Abdur Rahman University, Chennai 600048, Tamilnadu, India

Adv. Mater. Lett., 2016, 7 (12), pp 996-1002

DOI: 10.5185/amlett.2016.6555

Publication Date (Web): Oct 12, 2016

E-mail:skkhadheerpasha@vit.ac.in

Abstract


Zeolite 4A nanoparticles were incorporated into Poly (3, 4 - ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) and Polyvinyl alcohol (PVA) blend matrix to prepare PEDOT: PSS/PVA/Zeolite 4A nanocomposites using solution casting technique. The structure and morphology of nanocomposites were examined using Fourier transform infrared spectroscopy, X-ray diffraction, UV-Vis spectroscopy and Scanning electron microscopy. The mechanical and dielectric properties of nanocomposites were also evaluated. The FTIR and XRD results indicate the strong interaction between the Zeolite 4A nanoparticles and the polymer matrix. The SEM micrographs show the homogeneous dispersion of Zeolite 4A into the polymer matrix. The nanocomposite exhibits a high dielectric constant and low dielectric loss, which could be due to proper dispersion and good interaction between Zeolite 4 A and polymer matrix. Thus, based on the results obtained it can be concluded that PEDOT: PSS/PVA/Zeolite 4A nanocomposites can be used as a flexible dielectric material for embedded capacitor applications.

Keywords

Zeolite 4A, PEDOT: PSS, dielectric properties, SEM.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM