Cover Page September-2016-Advanced Materials Letters

Advanced Materials Letters

Volume 7, Issue 9, Pages 735-742, September 2016
About Cover

Randomly Oriented Rectangular Shaped Structures Of CuO On NiO/ITO Surfaces

Siddharth Joshi1,2*, L. Krishnamurthy1,2, G. L. Shekar1,3

1Centre of Nanotechnology, National Institute of Engineering, Mysore, Karnataka, 570008, India

2Department of Mechanical Engineering, National Institute of Engineering, Mysore, Karnataka, 570008, India

3Department of Industrial Production Engineering, National Institute of Engineering, Mysore, Karnataka, 570008, India

Adv. Mater. Lett., 2016, 7 (9), pp 735-742

DOI: 10.5185/amlett.2016.6102

Publication Date (Web): Jul 09, 2016



Metal oxide materials are one of the promising materials for low power consumption devices due to their unique size and dimensionality dependent physical and chemical properties. Low cost of production is also a key component in micro/nanoscale devices. Cupric oxide (CuO) nanostructures are of particular interest because of their interesting properties and promising applications in solar cells, bio and gas sensors, batteries, super capacitors, catalysis, photo detectors, energetic materials and removal of organic pollutants from waste water. An attempt has been made to synthesize randomly oriented rectangular shaped nanostructures of CuO, via hydrothermal synthesis at low temperature (~70 °C) on top of NiO porous structured film. The film was deposited using chemical bath deposition method at room temperature using ITO coated glass plate as a substrate. One can observe that the CuO growth on NiO/ITO substrate not only filled the porous structures of NiO but also formed the long rectangular shaped nanostructures which were randomly oriented on top of NiO surface. The CuO rectangular nanostructures have the dimensions in order of (6±2.0) μm x (2.0±0.5) μm. The randomly oriented rectangular structure can assist the charge transport in between the different semiconducting layers. These rectangular shaped nanostructures can also be used in nano-electronic devices, or as a p-type conducting wires in future electronic device applications. The present study is limited to the surface morphology studies of the nanostructured thin layers of NiO/CuO composite materials. Structural and absorption measurements of the CuO/NiO hetero junction have been studied using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV spectroscopy. The energy band gap of both layers NiO and CuO have been calculated using UV spectroscopy and discussed further. Therefore, the present rectangular structure of CuO could be helpful for the purpose of designing novel function nanostructures for efficient energy harvesting.


Nickel oxide (NiO), copper oxide (CuO), thin film, structural and optical properties.

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM