Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
Adv. Mater. Lett., 2016, 7 (9), pp 697-701
DOI: 10.5185/amlett.2016.6101
Publication Date (Web): Jul 09, 2016
Copyright © IAAM-VBRI Press
E-mail:sudhirchandra1950@gmail.com
In this study, tungsten oxide nanorods have been grown by thermal oxidation of tungsten film deposited on oxidized silicon substrates for gas sensing applications. Tungsten film of thickness 100 nm was deposited by sputtering method and thermally oxidized in atmospheric ambient to synthesize nanorods. The morphology and crystal structure of tungsten oxide nanorods were characterized by scanning electron microscopy and X-ray diffraction. Also, crystal structure was verified using Raman techniques. Surface chemical composition of nanorods was analyzed using X-ray photoelectron spectroscopy. Results revealed that 100 nm film of tungsten, oxidized at 450 oC, produces nanorods of WO3 having monoclinic structure with diameter ~100 nm and length up to 1µm. Using standard photolithography process, Au/Cr inter digital electrodes were formed and nanorods were synthesized on it for VOCs sensing application. Sensor incorporating WO3 nanorods exhibits very good response to ethanol, methanol and acetone vapors. The sensor response was studied at different operating temperatures for varying concentration of VOCs. The results suggest the sensor has good potential towards gas sensing applications. It is demonstrated that these sensors can detect upto 10 ppm of ethanol vapour concentration when operated at 100 oC temperature.
Progress and Perspectives of Photodetectors Based on 2D Materials
Synthesis and Characterization of Platinum and Platinum based Alloy Nanoparticles Anchored on Various Carbon Materials for Methanol Oxidation in a DMFC – A Short Review
Influence of Processing Induced Morphology on the Performance of PP Injected Intricate Pieces Modified with MWCNT as a Painting Aide
Inhibitive Effect on the Rate of Hydrolysis of Tetracaine by the Surfactant-Coated Magnetic Nanoparticles (Fe3O4)
Multi-Energy System Based on Ocean Thermal Energy Conversion
Synthesis of Nitrogen-doped KTaTeO6 with Enhanced Visible Light Photocatalytic Degradation of Methylene Blue
Structural Evolution and Enhanced Energy Density, Ferroelectric Property Investigation in Gd Substituted NBT – BT Lead Free Ferroelectric Ceramics
Designing of 10 Wt. % Graphite Particulate Hot Forged AA7075 Composites and its Loss Factor Analysis
Positron Annihilation Spectroscopy of Basaltic Rocks from Plio-Qaternary Volcanics, Sana’a-Amran Volcanic Field, Yemen
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation