Synthesis And Doping Feasibility Of Composite-hydroxide-mediated Approach For The Cu1-xZnxO Nanomaterials

Tauseef Shahid1, Muhammad Arfan1, Waqas Ahmad1, Tayyaba BiBi4,5, Taj Muhammad Khan2,3*

1Department of Applied Physics, Federal Urdu University of Arts, Science and Technology, Islamabad 44000, Pakistan

2National Institute of Lasers and Optronics (NILOP), Islamabad 44000, Pakistan

3School of Physics, Trinity College Dublin (TCD), Dublin 2, Ireland    

4Peshawar University, Department of Chemistry, Peshawar 45000, Pakistan

5Dublin Institute of Technology (DIT), Dublin 8, Ireland

Adv. Mater. Lett., 2016, 7 (7), pp 561-566

DOI: 10.5185/amlett.2016.6384

Publication Date (Web): Jun 12, 2016

E-mail: tajakashne@gmail.com

Abstract


In this article, we report feasibility of composite hydroxide-mediated (CHM) approach for the synthesis and doping of Cu1-xZnxO (x=0%, 3%, 6% and 9%) nanomaterial. The proposed method offers a low cost, low temperature and environmentally friendly approach to preparing doped nanomaterials in a feasible and cost- effective route. Further, we investigate the effect of incorporated Zn+2 on the properties of produced Cu (II) O nanostructures. The X-ray diffraction analysis confirms formation of the single-phase monoclinic Cu (II) O and incorporation of Zn at the Cu-lattice sites. The crystalline structure is improved and the average grain size has increased from 85.32 nm to 124.86 nm. FTIR spectroscopy shows characteristic vibrational peaks of the Cu (II)-O bonding which confirms formation of the Cu (II) O. SEM micrographs reveal interesting flower like dense features with morphological peculiarities and seems to strongly depend on the content of the incorporated Zn+2. The UV- visible spectra are measured to study the direct bandgap of the prepared nanomaterial. The direct bandgap found to be in the range of 3.73 - 3.89 eV. The method seems experimentally friendly and provides a feasible and a high productive fast synthesis route for the doped oxide nanomaterials in a single step with tunable properties for the research purposes. However, the method still requires further investigation to finely control doping for the desired properties of a nanomaterial and to give a potential avenue for further practical scale-up of the production process and applications of novel devices based on doped nanostructures.

Keywords

Cu1-xZnxO, nanomaterials, SEM, CHM, bandgap.

Upcoming Congress

Knowledge Experience at Sea TM