Cover Page October-2011-Advanced Materials Letters

Advanced Materials Letters

Volume 2, Issue 4, Pages 264-267, October 2011
About Cover


Biomimetic piezoelectric quartz sensor for folic acid based on a molecular imprinting technology

Rashmi Madhuri, Mahavir Prasad Tiwari, Deepak Kumar, Aparna Mukharji, Bhim Bali Prasad*

Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India

Adv. Mater. Lett., 2011, 2 (4), pp 264-267

DOI: 10.5185/amlett.indias.194

Publication Date (Web): Apr 08, 2012

E-mail: prof.bbpd@yahoo.com

Abstract

A novel molecularly imprinted polymer (MIP)-modified quartz crystal microbalance (QCM) sensor with high selectivity has been developed for the determination of folic acid via activator generated-atom transfer radical polymerization (AGET-ATRP) technique. It requires an alkyl halide (R-X) as an initiator, a transition metal complex as a catalyst, and an amine as reducing agent. Herein, chlorosilane was used as initiator which was grafted onto the self assembled monolayer modified-quartz crystal surface followed by the addition of pre-polymer mixture which latter underwent thermal cross-linking resulting in MIP-modified QCM sensor. The linear working range (quantification) was found to be 0.6-26.0 μg L-1, with the detection limit as low as 0.08 μg L-1 (S/N=3).

Keywords

Molecularly imprinted polymer, quartz crystal microbalance, folic acid, activator generated-atom transfer radical polymerization

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM