A First-principle Study Of The Optical Properties Of Pure And Doped LaNiO3

Tarun Kumar Kundu*, Debolina Misra 

Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

Adv. Mater. Lett., 2016, 7 (5), pp 344-348

DOI: 10.5185/amlett.2016.6105

Publication Date (Web): Apr 04, 2016

E-mail: tkkundu@metal.iitkgp.ernet.in

Abstract


Density Functional Theory (DFT) is employed to study the various optical properties of pseudo-cubic LaNiO3. As LaNiO3 is a strongly correlated material, conventional DFT like LDA or GGA and even GW approximation fail to describe, we have examined the optical spectra of this compound using GGA(PBE)+U approach. The advantage of incorporating Hubbard U in this approach is to take the strong electronic correlation in the system into account. The optical spectra of this compound are found to be consisted of the Drude peak and some high energy peaks. While the Drude peak reflects the dominant free carrier contributions at the low energy region, the high energy peaks originate from the inter-band transitions within the system. We have also studied the remarkable changes in the optical properties in Fe doped LaNiO3 (LaNi1-xFexO3), in order to probe related properties, corresponding to their applications in solid-oxide fuel cells. Our calculations have revealed that even 25% of Fe doping is adequate to trigger a first order metal to insulator transition in LaNiO3. The optical spectra of LaNi1-xFexO3 compounds are calculated using the hybrid functional HSE and the doping-induced metal to insulator transition in LaNiO3 is attributed to the altered crystal environment and electronic configuration of the compound. 

Keywords

DFT, optical conductivity, doping, density of states, metal insulator transition.

Current Issue

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  


Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review


Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis


Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models


Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field


Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes


Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area


Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 


Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics


Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?


Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities


Advanced Oxidations of Tartrazine Azo-dye


Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients


Previous issues

Advanced Materials Congress Celebrating 10th Years of Establishment

Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  

The Cause of 100-year Low Carbonated Concrete of the Bridge 

Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections

Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends

Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method

Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane

Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 

Vilsmeier-Haack Transformations under Non Classical Conditions

New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen

An Assessment of Tribological Characteristics under different Operating Condition

Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation

Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites

Upcoming Congress

Knowledge Experience at Sea TM