1Department of Materials & Applied Chemistry, College of Science & Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308, Japan
2National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
Adv. Mater. Lett., 2016, 7 (5), pp 339-343
DOI: 10.5185/amlett.2016.6072
Publication Date (Web): Apr 04, 2016
Copyright © IAAM-VBRI Press
E-mail: umegaki.tetsuo@nihon-u.ac.jp
In this work, we investigate influence of amount of L(+)-arginine on morphology of hollow silica-alumina composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane. Hollow silica-alumina composite spheres were prepared by polystyrene templates method. In this method, silica-alumina composite shell were coated on polystyrene particles via a sol-gel reaction using L(+)-arginine as promoter, and the polystyrene template particles were removed by calcination. From the result of transmission electron microscopy, shell thickness of the hollow spheres prepared amount of L(+)-arginine of 0.0581, 0.1163, 0.2325, and 0.4650 g were 10, 20, 26, and 30 nm, respectively. From the result of nitrogen sorption, average pore size of the hollow spheres prepared amount of L(+)-arginine of 0.0581, 0.1163, 0.2325, and 0.4650 g was 6.2, 4.2, 3.4, and 2.9 nm, respectively. These results indicate that pore size and shell thickness changed into adjusting amount of L(+)-arginine. Activity of the hollow spheres prepared using various amount of L(+)-arginine for hydrolytic dehydrogenation of ammonia borane were compared. The result indicates that amount of hydrogen evolution of all the hollow spheres was almost the same level. On the other hands, hydrogen evolution rate increase with decrease of amount of L(+)-arginine.
Ammonia borane, hollow silica-alumina composite spheres, amount of L(+)-arginine, average pore size,shell thickness.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study