1Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
2Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran
3Materials science Group, Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
Adv. Mater. Lett., 2016, 7 (3), pp 209-215
DOI: 10.5185/amlett.2016.6014
Publication Date (Web): Feb 01, 2016
Copyright © IAAM-VBRI Press
E-mail: Saba.goodarzi@gmail.com
Titanium alloys have been extensively used as promising implant materials. The anodic oxide layer on the surface of this alloy can be a compact, porous or a tubular structure, which has a direct impact on the final characteristics of the implants. In this study, nano topographic oxide arrays were synthesized on the surface of titanium substrates using an anodic oxidation technique. The anodization process was performed at a two-electrode electrochemical cell, and then the samples were annealed to obtain crystalline structures. The synthesized samples were analyzed to evaluate the compositional phase, morphology, surface hydrophilicity and corrosion resistance of the nanostructured oxide arrays in artificial saliva. Microscopic observations confirmed the formation of a nanotubular structure on the surface of titanium substrate depending on the anodization condition. After heat-treatment at 570 °C, crystallographic analyses showed that the obtained crystalline phase was a mixture of Anatase and Rutile phases. The electrochemical impedance spectroscopy (EIS) results indicated a significant improvement in the corrosion resistance and electrochemical stability of the anodized sample in artificial saliva compare to the control samples. In addition, the anodized samples showed a better hydrophilic characteristics, viability and proliferation of periodontal ligament cells in comparison with the un-anodized samples. This study demonstrated that the anodized titanium samples, with the nanotubular structure on the surfaces, could be considered as a good candidate for dental implants.
Titanium dioxide nanotube, anodization, hydrophilicity, artificial saliva, periodontal ligament cells.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study