Microstructural and phase analysis of Al based bulk metallic glass synthesized by mechanical alloyin Microstructural and phase analysis of Al based bulk metallic glass synthesized by mechanical alloyin
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
Adv. Mater. Lett., 2016, 7 (3), pp 187-191
DOI: 10.5185/amlett.2016.6174
Publication Date (Web): Feb 01, 2016
Copyright © IAAM-VBRI Press
E-mail: laha@metal.iitkgp.ernet.in
In the present work, Al86Ni8Y6 and Al86Ni8La6 powder blends were mechanically alloyed. Al86Ni8Y6 yielded full amorphous structure (150 h); whereas Al86Ni8La6 was partially amorphized after same duration of milling attributed to incomplete dissolution of solute ‘La’ in solvent ‘Al’. DSC experiment showed wider glass transition temperature range of ~ 44 oC (Tx - Tg = 268 oC-224 oC) in Al86Ni8Y6 amorphous powders; whereas no glass transition temperature was detected in Al86Ni8La6 powders. Further, Al86Ni8Y6 amorphous powders were consolidated via spark plasma sintering in the pressure range of 100-400 MPa. XRD and TEM analysis confirmed retention of larger fraction of amorphous phase in higher pressure sintered sample, attributed to suppression of mass transfer diffusion kinetics process. Higher pressure favored short range ordering leading to formation of various intermetallic phases; whereas comparatively faster diffusion in case of low pressure sintering promoted long range ordering forming nanocrystalline FCC-Al. Higher sintering pressure (say 400 MPa) consolidated sample resulted in better densification (~ 99 %) with improved inter-particle bonding and moreover, retention of larger volume fraction (~ 92 vol %) of amorphous phase with intermetallic nano-precipitates. Vickers microhardness test showed improvement in hardness with increasing sintering pressure attributed to higher fraction of retained amorphous phase and better inter-particle bonding.
Al based amorphous alloy, mechanical alloying, spark plasma sintering, sintering pressure,microstructural evolution.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India