Economic Growth Of Vertically Aligned Multiwalled Carbon Nanotubes In Nitrogen Atmosphere

Abhishek Kumar Arya, Bhanu Pratap Singh*, Jeevan Jyoti, Santwana Pati, S.R. Dhakate

Physics and Engineering of Carbon, Division of Materials Physics and Engineering, CSIR-National Physical Laboratory, New Delhi 11012, India

Adv. Mater. Lett., 2015, 6 (12), pp 1094-1097

DOI: 10.5185/amlett.2015.6082

Publication Date (Web): Nov 24, 2015

E-mail: bps@nplindia.org

Abstract


Vertically aligned carbon nanotube (VACNT) arrays are widely studied because of their immense potential in a wide range of applications.  In order to tailor the properties of carbon nanotubes (CNTs) for a particular application, vertical alignment in the form of sheet is a major breakthrough. Herein we report an economic and effective strategy developed to synthesise aligned multiwalled carbon nanotube sheets using Al powder as buffer layer. We achieved easy growth of VACNTs sheets using toluene/ferrocene solution in a two-zone furnace by chemical vapor deposition method. First zone was set at temperature 200 °C and other zone was set at temperature 750 °C for the synthesis of VACNTs. Almost 500 µm long VACNT sheet was grown. We observed the significant growth of VACNT sheet on Al powdered quartz substrate in nitrogen medium. Uniform length of CNTs was maintained all over the sheet and additionally nitrogen is an economical alternative rather than other inert gases.

Keywords

Chemical vapor deposition, vertically aligned CNT, buffer layer, synthesis.

Current Issue

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  


Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review


Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis


Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models


Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field


Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes


Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area


Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 


Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics


Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?


Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities


Advanced Oxidations of Tartrazine Azo-dye


Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients


Previous issues

Advanced Materials Congress Celebrating 10th Years of Establishment

Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  

The Cause of 100-year Low Carbonated Concrete of the Bridge 

Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections

Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends

Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method

Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane

Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 

Vilsmeier-Haack Transformations under Non Classical Conditions

New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen

An Assessment of Tribological Characteristics under different Operating Condition

Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation

Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites

Upcoming Congress

Knowledge Experience at Sea TM