Electrical conductivity, mechanical stability, antibacterial and anticancer activities of ethyl cell Electrical conductivity, mechanical stability, antibacterial and anticancer activities of ethyl cell
1Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, India
2Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
Adv. Mater. Lett., 2015, 6 (12), pp 1058-1065
DOI: 10.5185/amlett.2015.5896
Publication Date (Web): Nov 24, 2015
Copyright © IAAM-VBRI Press
E-mail: t_arfin@neeri.res.in, faruq_m@upm.edu.my
In the present study, a very prominent cost effective sol-gel method was used to amalgate the ethyl cellulose-tin(II) hydrogen phosphate (EC-SnHPO4), an organic–inorganic composite material with certain acidic condition practiced in a conductivity system. The physical characterization of the material was described by the UV-Vis and FTIR study. The different monovalent electrolytes such as KCl (aq) and NaCl (aq) at diverse temperature range was employed to measure the conductivity of EC-SnHPO4 and also for the concentration to explore between affinity of conductivity and electrochemical properties of the material. From the study, the conductivity was established to be less for K+ than Na+. For such process in addition, the different parameters such as ionization potential, oscillator strength, transition dipole moment, resonance energy, and transition energy were investigated. Finally, the anticancer effect against the MCF-7 breast cancer cell line and the antibacterial activity against two different bacterial strains show the potential pharmacological activity of the EC-SnHPO4 towards medical applications.
Tin (II) hydrogen phosphate, conductivity, ionization potential, transition energy, antibacterial activity.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India