1Research Institute of Medical Materials, Tomsk State University, ul. 19 Gv. divizii, 17, Tomsk 634045, Russia
2Department of Clinical Surgery, Siberian State Medical University, ul Moskovskiy tr, 1, Tomsk 634050, Russia
3Kang & Park Medical Co., O-song Saengmyung1-ro, Chungcheongbukdo, O-Song 363-951, South Korea
Adv. Mater. Lett., 2015, 6 (9), pp 774-778
DOI: 10.5185/amlett.2015.5882
Publication Date (Web): Sep 06, 2015
Copyright © IAAM-VBRI Press
E-mail: tc77@mail2000.ru
Cell responses to electromagnetic radiation are due to many factors including the cellular microenvironment. The aim of the present study was to explore the effects of ultraviolet (UV) and infrared (IR) irradiation of low intensity on cultured cells derived from different biological tissues (spleen, bone marrow, and Ehrlich's adenocarcinoma), which were immobilized in a porous TiNi-based alloy scaffold. Accordingly, the following objectives were set: i) to evaluate the impact of low-intensity radiation on cell suspensions, and ii) to carry out a comparative analysis of the viability of cells immobilized in porous TiNi-based alloy and IR- and UV-irradiated. The data show that the extracellular environment of bone marrow, tumor and spleen cell populations affects their viability and proliferative potency in porous TiNi-based scaffolds. IR- and UV irradiation of cell cultures immobilized in the scaffold affects the cell viability in populations of bone marrow, tumor, and spleen cells. In case of IR irradiation, cell viability was significantly improved, at the same time UV irradiation suppressed cell proliferation activity. The effect of IR irradiation can be used to resuscitate the cell area. The effect of UV irradiation can be used to destroy residual tumor lesions or other pathological cell populations. Effects of low-intensity infrared (IR) and ultraviolet (UV) radiation on the number of viable cells were evaluated against the control group in which cells were exposed to natural daylight. The results showed that IR irradiation led to a 4.6-, 2.5-, and 1.3-fold increase in viable Ehrlich tumor, bone marrow, and spleen cells, respectively, while UV exposure led to a 3.9-, 1.5-, and 1.2-fold increase, respectively.
Cell cultures, cell tissue engineering, porous TiNi scaffold, IR and UV radiation.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study