1Department of Chemistry, The University of Texas-Pan American, 1201 W. University Dr., Edinburg TX 78539, USA
2Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
3Energy and Environment Fusion Technology Center, Department of Energy and Biotechnology, Myongji University, Yongin, Kyonggi-do 449-728, South Korea
4Department of Biomedical Engineering, The University of Memphis, Memphis TN 38152, USA
Adv. Mater. Lett., 2015, 6 (9), pp 768-773
DOI: 10.5185/amlett.2015.5888
Publication Date (Web): Sep 06, 2015
Copyright © IAAM-VBRI Press
E-mail: jmacossay@utpa.edu, faheem99in@yahoo.com
Tissue engineering is a multidisciplinary field that has evolved in various dimensions in recent years. One of the main aspects in this field is the proper adjustment and final compatibility of implants at the target site of surgery. For this purpose, it is desired to have the materials fabricated at the nanometer scale, since these dimensions will ultimately accelerate the fixation of implants at the cellular level. In this study, electrospun polyurethane nanofibers and their analogous nanofibers containing MWCNTs are introduced for tissue engineering applications. Since MWCNTs agglomerate to form bundles, a high intensity sonication procedure was used to disperse them, followed by electrospinning the polymer solutions that contained these previously dispersed MWCNTs. Characterization of the produced nanofibers has confirmed production of different non-woven mats, which include random, semi-aligned and mostly aligned patterns. A simultaneous and comparative study was conducted on the nanofibers with respect to their thermal stability, mechanical properties and biocompatibility. Results indicate that the mostly aligned nanofibers pattern presents higher thermal stability, mechanical properties, and biocompatibility. Furthermore, incorporation of MWCNTs among the different arrangements significantly improved the mechanical properties and cell alignment along the nanofibers.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study