Cover Page August-2015-Advanced Materials Letters

Advanced Materials Letters

Volume 6, Issue 8, Pages 749-755, August 2015
About Cover


An Investigation Of Electrical, Magnetic And Optical Properties Of La1-xCaxMnO3 (x= 0.0, 0.3, 0.5 And 0.7) System

Khalid Sultan*, M. Ikram*

Solid State Physics Lab, Department of Physics, National Institute of Technology Hazratbal Srinagar, J & K 190006, India

Adv. Mater. Lett., 2015, 6 (8), pp 749-755

DOI: 10.5185/amlett.2015.5875

Publication Date (Web): Aug 02, 2015

E-mail: ksbhat.phy@gmail.com

Abstract

Results from a detailed investigation on the structural, optical, electrical and magnetic properties of polycrystalline bulk samples of La1-xCaxMnO3 (x=0, 0.3, 0.5 and 0.7) synthesized by solid state reaction method are presented. The Rietveld analysis of the X-Ray diffraction (XRD) profiles clearly indicated that the XRD patterns are well fitted with orthorhombic structure. Raman spectral features revealed their finger print modes and irreducible representations at the brillouin zone center as per the group theory. It is also observed that as doping is increased, these compounds tend towards a cubic form. Ooptical band gap ‘Eg’ study reveals that the Eg decreases with Ca doping resulting in increase in conductivity. This is consistent with the resistivity measurements. In all the samples, except when x = 0.0 and 0.7, the resistivity at the highest temperature measured (ρ300 K) is less than that at 5 K (ρ5K), although for temperature T<Tp, the material shows a metal variation of ρ with temperature (d ρ/dT > 0) whereas the value of ρ300 K decreases as x increases. Magnetization study revealed that temperatures corresponding to magnetic transitions Tc increases with doping. It is observed that the composition x = 0.5 show both a paramagnetic to ferromagnetic transition and an antiferromagnetic transition. An effort has been made to relate above observed results in the compound with the structural changes brought about by Ca doping.Possible mechanisms such as activated transport and Zener double exchange are used to understand the phase diagram of these materials.

Keywords

Manganites, magnetization, zener double exchange, activation energy.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM