Cover Page August-2015-Advanced Materials Letters

Advanced Materials Letters

Volume 6, Issue 8, Pages 731-737, August 2015
About Cover

 Investigation Into The Suitability Of Kenaf Fiber To Produce Structural Concrete

Noor Md. Sadiqul Hasan1, Habibur Rahman Sobuz2*, Abubakar Sharif Auwalu1, Nafisa Tamanna2

1School of Civil Engineering, Linton University College, Legenda Education Group, Mantin 71700, Malaysia

2Department of Civil Engineering, Universiti Malyaisia Sarawak, Kota Samarahan, Sarawak 94300, Malaysia

Adv. Mater. Lett., 2015, 6 (8), pp 731-737

DOI: 10.5185/amlett.2015.5818

Publication Date (Web): Aug 02, 2015



This paper investigates of an experimental research that was conducted to study the effect of natural kenaf fiber on concrete production which implements in the sustainable construction industry as a low-cost material. Concrete produced with kenaf fiber reinforced concrete (KFRC) with fiber volume contents are increasing 0%, 1%, 3% and 5% in the mix proportions. The concrete fresh properties consisting slump and density are determined in the laboratory. The compressive strength, compacting factor test, modulus of rupture, surface strength, and direct shear test of KFRC specimens are investigated and compared to the properties of conventional concrete specimens. A total number of 36 concrete cubes with the size of 150 mm x 150 mm x 150 mm were tested for compressive strength, 36 Concrete beams with the size of 100 mm x 100 mm x 350 mm were tested for flexural strength, and also 36 concrete small beams with the size of 100 mm x 100 mm x 350 mm were tested for direct shear test. All of the specimens were cured for 7, 14 and 28 days before testing. The experimental results indicate that the mechanical and fresh properties of KFRC are decreased then the conventional concrete specimens with the increased of kenaf fiber content. It is also observed that the additions of fiber decreased the ultimate load of the concrete for compressive strength, modulus of rupture and direct shear test. However, kenaf fiber concrete enhanced more toughness and ductility behaviour compared with the conventional concrete. Finally, it concluded that kenaf fiber is a suitable material that could potentially be used to produce low-cost ‘green’ concrete which has higher toughness and reduce the cracking propagation in the concrete structural applications.


Sustainable, toughness, kenaf fiber, compressive strength, flexural strength, direct shear, rebound hammer, ductility.

Current Issue

Wearable Healthcare Devices

Nano-Graphene and Its Derivatives for Fabrication of Flexible Electronic Devices: A Quick Review

Natural Fibers as Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials – A Review

Geometrical Characterization of Wire-and-Arc Additive Manufactured Steel Element

Plasma Activated Water Generation and its Application in Agriculture

Development of Advanced Electrode Materials on Porous Silicon for Micropower Formic Acid-Oxygen Fuel Cells 

Water Management within Tragacanth gum-g-polyitaconic Acid Hydrogels

Synthesis and Characterization of Humic Acid-coated Fe3O4 Nanoparticles for Methylene Blue Adsorption Activity

Synthesis and characterization of thermally stable flame retardant thermoplastic polyphosphazenes

Synthesis of Rod-coil Molecules bearing Oligo-Phenylene Vinylene Motifs: Effect of PEO Chain Lengths on the Evolution of Nanostructures Morphology and their Photophysical Properties

Dielectric Properties of Cu based Polymeric Composites in X-band of Microwave Frequency

Critical Association Concentration of Dansyl-Poly (acrylic acid) Synthetized by Redox Polymerization Followed by an Esterification in Aqueous Solution: Spectrophotometric and Tensiometric Studies

Influence of Iron Doping on Structural and Optical Properties of Nickel Oxide Nanoparticles

Upcoming Congress

Knowledge Experience at Sea TM