Cover Page July-2015-Advanced Materials Letters

Advanced Materials Letters

Volume 6, Issue 7, Pages 664-669, July 2015
About Cover

 Hg(II) Adsorption By Alginate-guar Gum Templated Titania Spheres: Kinetic And Isotherm Studies

Vandana Singh*, Preeti, Angela Singh, Devendra Singh, Jadveer Singh, Arvind K Pandey, Tulika Malviya

Department of Chemistry, University of Allahabad, Uttar Pradesh 211002, India

Adv. Mater. Lett., 2015, 6 (7), pp 664-669

DOI: 10.5185/amlett.2015.5624

Publication Date (Web): Jul 12, 2015



In present communication we report on the kinetic and isotherm studies on Hg(II) removal using our recently reported material, the millimeter sized hollow titania spheres (TSP). The mesoporous spheres with high surface area (11.75 m2/g) and bimodal pore size distribution were fabricated by a facile sol-gel approach using alginate-guar gum hybrid beads as the structure directing agent. In order to investigate the utility of TSP for Hg(II) adsorption, the batch adsorption experiments were conducted at various pH values (2–7), initial Hg(II) concentrations (50–300 mg/L), and TSP doses (20-100 mg) at 150 rpm, and 30 °C temperature. The spheres exhibited good capacity to adsorb Hg(II) in wide pH range (pH 3 to pH 7). It was possible to remove >95 % Hg(II) from 100 mg/L synthetic Hg(II) solution at pH 5, and 50 mg TSP dose in 10 h. The adsorption equilibrium data were better fitted to Langmuir model at low temperatures while Freundlich model become favored as the temperature was increased to 40 ºC. Langmuir adsorption isotherm study indicated that the monolayer adsorption capacity of TSP was 62.5 mg/g 62.5 mg/g 78.7 mg/g and 100 mg/g at 10, 20, 30, and 40 ºC respectively, which suggested good Hg(II) adsorption capacity of TSP. The calculated RL values evidenced the feasibility of the adsorption. Adsorption kinetic data well accorded with pseudo-second order kinetic model with the rate constant k, equal to 2.5 x 10-4 g/mg.min 1.99 x 10-4 g/mg.min and 0.28 x 10-4 g/mg.min at 100, 150 and 200 mg/mL initial Hg (II) concentrations, indicating chemisorption taking place in the rate determining step. At high initial Hg(II) concentration (200 mg/mL), the adsorption was exclusively controlled by intraparticle diffusion. The study revealed the suitability of TSP for the mercury removal from wastewater.


Titania spheres, guar-alginate hybrid beads, Hg(II), adsorption.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM