Cover Page July-2015-Advanced Materials Letters

Advanced Materials Letters

Volume 6, Issue 7, Pages 616-619, July 2015
About Cover


Synthesis And Optical Characterization Of Ca2PO4Cl:Tb3+ And Mn2+ Phosphor For Solid State Lighting

N. S. Kokode1*, V. R. Panse2, S. J. Dhoble

1N.H.College, Bramhapuri, Gondwana University, Gadchiroli 441205, India

2Department of Applied Physics, Namdeorao Poreddiwar College of Engineering & Technology, Gadchiroli 442605, India

3Department of Physics, RTM Nagpur University, Nagpur 440033, India

Adv. Mater. Lett., 2015, 6 (7), pp 616-619

DOI: 10.5185/amlett.2015.SMS3

Publication Date (Web): Jul 12, 2015

E-mail: drns.kokode@gmail.com

Abstract

In present work we studied the luminescence properties of Tb3+ and Mn2+ doped Ca2PO4Cl phosphor synthesized by wet chemical method were studied with extra heat treatment, to understand the mechanism of excitation and the corresponding emission of prepared phosphor. For the green emission, Tb3+ ion is used as an activator, the excitation and emission spectra indicate that this phosphor can be effectively excited by 380 nm, to exhibit bright green emission centered at 545 nm corresponding to the f→f transition of Tb3+ ions. The emission spectrum of Mn2+ ion at 405 nm excitation 4T1(4G) - 6A1(6S) gives an emission band at 591 nm (orange-red). The observed photoluminescence (PL) measurements of Tb3+ and Mn2+ activated prepared phosphor indicates that these are the outstanding green and orange-red emitting potential phosphor , suitable application for the solid state lighting. The synthesized phosphors were analyzed by X-ray diffraction (XRD) for confirmation of phase and purity. The morphology and structure were characterized by scanning electron microscopy. Thus the phosphors in this system may be chosen as the green component for the tri-color lamp and certainly applied in w-UV LEDs. In the view of the excitation band and excellent luminescent properties, Ca2PO4Cl:Tb3+ and Mn2+ phosphor is expected to be a potential candidate for application in n-UV white LEDs and solid-state lighting because of its cost-efficient manufacturing, mercury-free excitation and eco-friendly characteristics.

Keywords

Wet chemical method, solid state lighting, photoluminescence, XRD, SEM.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM