Silicon Nitride Thin Films Deposited By Reactive Gas-timing Magnetron Sputtering For Protective Coating Applications Silicon Nitride Thin Films Deposited By Reactive Gas-timing Magnetron Sputtering For Protective Coating Applications
1College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
2NECTEC, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
3Rajanagarindra Rajabhat University, Chachoengsao 24000, Thailand
Adv. Mater. Lett., 2015, 6 (6), pp 554-559
DOI: 10.5185/amlett.2015.SMS5
Publication Date (Web): May 28, 2015
Copyright © IAAM-VBRI Press
E-mail: kpsirapa@live.kmitl.ac.th
Silicon nitride is a promising alternative to carbon based materials for protective coatings, owing to its compatibility with existing silicon-based microfabrication. The complexity of the fabrication processes and contaminations hamper fine-tuning to obtain desirable coating properties. We have explored the reactive gas-timing rf plasma sputtering technique for silicon nitride thin film deposition as an alternative method to fine-tune the film properties. The gas-timing technique controls the on-off sequence of the sputtering gas (Ar) and the reactive gas (N2) during deposition. We focus this investigation to the effect of the Ar:N2 gas timing ratio (10:0, 10:1, 10:3, 10:5, 10:7 and 10:10) on the composition, the morphology, the corrosion resistance, and the hardness properties of the films, in comparison to the films deposited by conventional reactive sputtering with Ar-N2 gas mixture. These deposited silicon nitride films were characterized by Auger electron spectroscopy, Raman spectroscopy, and atomic force microscopy. The chemical resistance was measured by the electrochemical corrosion test in sulfuric acid, while the hardness properties were obtained by nanoindentation. The results reveal that although the nitrogen content in the films increases only slightly when the N2 timing is prolonged, the corrosive current of the films decreases abruptly. A thin passivating oxidized layer is found to play a major role in the corrosion resistance. In contrast, the hardness properties exhibit a uniform variation with the N2 timing. The gas-timing sequence may induce morphological changes the underlying silicon nitride films. The highest hardness obtained by the gas-timing technique almost doubles that produced by the conventional mixed gas sputtering. Thus the reactive gas-timing technique suggests a new route to selectively control the properties of silicon nitride films with minor modification to existing microfabrication processes.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India