Perspective microscale piezoelectric harvester for converting flow energy in water way Perspective microscale piezoelectric harvester for converting flow energy in water way
1Department of Physics, Faculty of Science, Prince of Songkla University (PSU), Songkhla, Thailand
2Department of Mechanical Engineering, Faculty of Engineering, Prince of Songkla University (PSU), Songkhla, Thailand
3Center of Excellence in Nanotechnology for Energy (CENE), Prince of Songkla University (PSU), Songkhla, Thailand
Adv. Mater. Lett., 2015, 6 (6), pp 538-543
DOI: 10.5185/amlett.2015.SMS4
Publication Date (Web): May 28, 2015
Copyright © IAAM-VBRI Press
E-mail: nantakan.m@psu.ac.th
This work proposes an energy harvester that captures the mechanical energy caused by water flow and converts into an electrical energy through the piezoelectric effect. A flexible piezo-film has been used as a transducer in the energy harvesting system and the kinetic energy of the water flow is produced by using the vortex induced vibration technique. When placing in water way the transducer is fluctuating in the vortex of the fluid flow, producing the kinetic energy of 44 mW at a low fluid velocity of 6.8 m/s and low frequency of 0.4 Hz. This configuration generates a corresponding open-circuit voltage of 6.6 mV at a matching load of 1 MW, leading to the maximum output power of 0.18 mW. An efficiency power conversion of the harvesting system was evaluated to be about 4.4 %. It is possible to use the proposed unit under gravitational force where there is a difference in the levels of the fluid no matter in water way or transporting parts such as petroleum pipes. However, rectifying the output voltage generated by the present micro generator is compulsory in order to feed small scale electronics and communication, for instance, wireless sensor networks. Furthermore, multiple arrays of the piezoelectric unit are also promising for delivering higher output power.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India