In Situ Formation Of Tantalum Oxide – PMMA Hybrid Dielectric Thin Films For Transparent Electronic Application

Elena Emanuela Valcu (Herbei)1, Viorica Musat1*, Susanne Oertel2, Michael P.M. Jank2,  Timothy Leedham

1Centre  of  Nanostructures  and Functional Materials-CNMF, Department of Materials Science and Engineering, Faculty of Engineering, "Dunărea de Jos" University of Galaţi, 111 Domnească Street, Galaţi 800201, Romania

2Fraunhofer Institute for Integrated Systems and Device Technology IISB, Erlangen, Germany

3Multivalent Ltd., Eriswell, Suffolk IP27 9BJ, United Kingdom 

Adv. Mater. Lett., 2015, 6 (6), pp 485-491

DOI: 10.5185/amlett.2015.5785

Publication Date (Web): May 28, 2015



 Solution-processed high-k dielectric hybrid thin films prepared at temperatures below 200oC represent a subject of increasing scientific interest satisfying current requirements for printable thin film transistors used in transparent flexible electronics. In this work, we propose a new approach for the synthesis of new tantalum oxide-PMMA hybrid dielectric thin films at 160oC by modified sol-gel method, using as precursors tantalum ethoxide cluster (Ta(OC2H5)5) and methyl methacrylate monomer (MMA). So far it has not been reported in situ formation of tantalum oxide nanocrystals in hybrid dielectric materials at this low temperature. Hybrid sols with 1:1 and 4:1 (Ta(OC2H5)5):MMA molar ratios were used for spin-coating of thin films. The thermal behavior of these sols was observed in order to optimize the post-deposition treatment of the films. The hybrid films were investigated by scanning electron microscopy (SEM) for thickness and morphology, by grazing incidence x-ray diffraction (GIXRD) and high-resolution transmission electron microscopy (HRTEM) for tantalum oxide phase formation. TaO2 single crystals with a diameter of about 2 nm embedded in an amorphous phase were identified. The dielectric properties of the hybrid thin films were derived from the characterization of Metal-Insulator-Metal (MIM) structures by current-voltage and capacitance-voltage measurements. I-V curves show a leakage current between 10-12 and 10-7A and a constant capacitance in bias range ± 50 V.  For films with  1:1 and  4:1 molar ratio, the leakage current density ranges between 10-9 - 10-3A/cm2 and  10-9 - 10-4 A/cm2, and the limit of the current density goes to an electric field of ±1.2 MV/cm and ±2.5 MV/cm, respectively. In the case of films with 1:1 molar ratio, the applied voltage was up to 70 V in positive domain and no breakdown was observed for the dielectric layer. These results show higher current density for a larger voltage range, than the characteristics leakage current values reported for PMMA (10-8 A/cm2) at 0.3 MV/cm. The value of the permittivity ranges between 3.5 and 7.5 at 1 MHz, depending on the tantalum alkoxyde: MMA molar ratio, suggesting very promising future of these hybrid dielectric thin films for the fabrication of transparent TFTs, which can serve for next generation of transparent and flexible electronic devices.


Tantalum ethoxide cluster, modified sol-gel, hybrid thin films, TaO2 nanocrystals, dielectric constant.

Current Issue

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Previous issues

Advanced Materials Congress Celebrating 10th Years of Establishment

Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  

The Cause of 100-year Low Carbonated Concrete of the Bridge 

Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections

Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends

Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method

Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane

Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 

Vilsmeier-Haack Transformations under Non Classical Conditions

New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen

An Assessment of Tribological Characteristics under different Operating Condition

Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation

Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites

Upcoming Congress

Knowledge Experience at Sea TM