State-of-the-art of lead free ferroelectrics: A critical review State-of-the-art of lead free ferroelectrics: A critical review
1School of Physics, Shoolini University, Solan, HP 173229, India
2Ferroelectric Research Laboratory, Department of Physics, A. N. College, Patna 800013, India
3Biosensors and Bioelectronics Centre, IFM, Linkopings Universitet, Linkoping 58183, Sweden
4Tekidag AB, UCS, Teknikringen 4A, Mjärdevi Science Park, Linköping 58330, Sweden
Adv. Mater. Lett., 2015, 6 (6), pp 453-484
DOI: 10.5185/amlett.2015.4086
Publication Date (Web): May 28, 2015
Copyright © IAAM-VBRI Press
E-mail: rshyam1273@gmail.com
Lead based piezoelectric perovskite materials are well known for their excellent piezoelectric properties, which are extensively used in industrial applications. Though, considering the toxicity of lead and its compounds, there is a general awareness for the development of environmental friendly lead-free materials as evidenced from the legislation passed by the European Union in this effect. The different class of materials is now being considered as potentially attractive alternatives to lead zirconate titanate (PZT) based perovskites for various applications. In this review, we review the progresses made on lead-free piezoelectric materials emphasizing on their synthesis, structure–property correlation, etc. Advancement of the various piezo systems such as bismuth sodium titanate, alkali niobates etc. and non-perovskites for example bismuth layer-structured ferroelectrics has been deliberated. It is found that some lead-free compositions show stable piezoelectric responses though they are not as high as the PZT system. This subject is of current interest to the ceramic researchers worldwide as evidenced from the large number of research publications and has motivated us to come out with a critical overview of the field. This article would drive to the researchers to advance the piezoelectric properties of the non-lead based perovskite compounds to achieve materials at par with the PZT system.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India