1Department of Physics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, India
2Department of Physics, Bangabasi Morning College, 19, R. C. Sarani, Kolkata 700 009, India
3Variable Energy Cyclotron Centre (VECC), 1/AF, Bidhannagar, Kolkata 700 064, India
4Department of Physics and Materials Science, Indian Institute of Technology, Kharagpur 721302, India
5Inter-University Accelerator Centre, P.O. Box 10502, Aruna Asaf Ali Marg, New Delhi 110067, India
Adv. Mater. Lett., 2015, 6 (4), pp 365-369
DOI: 10.5185/amlett.2015.5730
Publication Date (Web): Mar 21, 2015
Copyright © IAAM-VBRI Press
E-mail: djphy@caluniv.ac.in
1.2 MeV Argon (Ar) ion irradiation turns white coloured ZnO to yellowish (fluence 1 × 1014 ions/cm2) and then reddish brown (1 × 1014 ions/cm2). At the same time the material becomes much more conducting and purely blue luminescent for the highest fluence of irradiation. To get insight on the defects in the irradiated samples Ultraviolet-visible (UV-vis) absorption, Raman, and photoluminescence (PL) spectroscopy and Glancing Angle X-Ray Diffraction (GAXRD) measurements have been carried out. Enhancement of overall disorder in the irradiated samples is reflected from the GAXRD peak broadening. UV-vis absorption spectra of the samples shows new absorption bands due to irradiation. Complete absorption in the blue region of the spectrum and partial absorption in the green and red region changes the sample colour from white to reddish brown. The Raman peak representing wurtzite structure of the ZnO material (~ 437 cm-1) has decreased monotonically with the increase of irradiation fluence. At the same time, evolution of the 575 cm-1 Raman mode in the irradiated samples shows the increase of oxygen deficient disorder like zinc interstitials (IZn) and/or oxygen vacancies (VO) in ZnO. PL spectrum of the yellow coloured sample shows large reduction of overall luminescence compared to the unirradiated one. Further increase of fluence causes an increase of luminescence in the blue region of the spectrum. The blue-violet emission can be associated with the interstitial Zn (IZn) related optical transition. The results altogether indicates IZn type defects in the highest fluence irradiated sample. Large changes in the electrical resistance and luminescent features of ZnO using Ar ion beam provides a purposeful way to tune the optoelectronic properties of ZnO based devices.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study