Cover Page April-2015-Advanced Materials Letters

Advanced Materials Letters

Volume 6, Issue 4, Pages 365-369, April 2015
About Cover


Native Defects And Optical Properties Of Ar Ion Irradiated ZnO

S. Pal1, A. Sarkar2, D. Sanyal3, T. Rakshit4, D. Kanjilal5, P. Kumar5, S. K. Ray4, D. Jana1* 

1Department of Physics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, India

2Department of Physics, Bangabasi Morning College, 19, R. C. Sarani, Kolkata 700 009, India

3Variable Energy Cyclotron Centre (VECC), 1/AF, Bidhannagar, Kolkata 700 064, India

4Department of Physics and Materials Science, Indian Institute of Technology, Kharagpur 721302, India

5Inter-University Accelerator Centre, P.O. Box 10502, Aruna Asaf Ali Marg, New Delhi 110067, India

Adv. Mater. Lett., 2015, 6 (4), pp 365-369

DOI: 10.5185/amlett.2015.5730

Publication Date (Web): Mar 21, 2015

E-mail: djphy@caluniv.ac.in

Abstract

1.2 MeV Argon (Ar) ion irradiation turns white coloured ZnO to yellowish (fluence 1 × 1014 ions/cm2) and then reddish brown (1 × 1014 ions/cm2). At the same time the material becomes much more conducting and purely blue luminescent for the highest fluence of irradiation. To get insight on the defects in the irradiated samples Ultraviolet-visible (UV-vis) absorption, Raman, and photoluminescence (PL) spectroscopy and Glancing Angle X-Ray Diffraction (GAXRD) measurements have been carried out. Enhancement of overall disorder in the irradiated samples is reflected from the GAXRD peak broadening. UV-vis absorption spectra of the samples shows new absorption bands due to irradiation. Complete absorption in the blue region of the spectrum and partial absorption in the green and red region changes the sample colour from white to reddish brown. The Raman peak representing wurtzite structure of the ZnO material (~ 437 cm-1) has decreased monotonically with the increase of irradiation fluence. At the same time, evolution of the 575 cm-1 Raman mode in the irradiated samples shows the increase of oxygen deficient disorder like zinc interstitials (IZn) and/or oxygen vacancies (VO) in ZnO. PL spectrum of the yellow coloured sample shows large reduction of overall luminescence compared to the unirradiated one. Further increase of fluence causes an increase of luminescence in the blue region of the spectrum. The blue-violet emission can be associated with the interstitial Zn (IZn) related optical transition. The results altogether indicates IZn type defects in the highest fluence irradiated sample. Large changes in the electrical resistance and luminescent features of ZnO using Ar ion beam provides a purposeful way to tune the optoelectronic properties of ZnO based devices.

Keywords

ZnO, ion beam irradiation, defects, photoluminescence.

Current Issue

Current Global Scenario of Electric Vehicles


Review on Detection of Phenol in Water 


Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review


Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight


Plasma Activated Water as a Source of Nitrogen for Algae Growth


Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application


Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System


Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources


Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method


Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance


Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye


Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 


Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect


Previous issues

Wearable Healthcare Devices

Nano-Graphene and Its Derivatives for Fabrication of Flexible Electronic Devices: A Quick Review

Natural Fibers as Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials – A Review

Geometrical Characterization of Wire-and-Arc Additive Manufactured Steel Element

Plasma Activated Water Generation and its Application in Agriculture

Development of Advanced Electrode Materials on Porous Silicon for Micropower Formic Acid-Oxygen Fuel Cells 

Water Management within Tragacanth gum-g-polyitaconic Acid Hydrogels

Synthesis and Characterization of Humic Acid-coated Fe3O4 Nanoparticles for Methylene Blue Adsorption Activity

Synthesis and characterization of thermally stable flame retardant thermoplastic polyphosphazenes

Synthesis of Rod-coil Molecules bearing Oligo-Phenylene Vinylene Motifs: Effect of PEO Chain Lengths on the Evolution of Nanostructures Morphology and their Photophysical Properties

Dielectric Properties of Cu based Polymeric Composites in X-band of Microwave Frequency

Critical Association Concentration of Dansyl-Poly (acrylic acid) Synthetized by Redox Polymerization Followed by an Esterification in Aqueous Solution: Spectrophotometric and Tensiometric Studies

Influence of Iron Doping on Structural and Optical Properties of Nickel Oxide Nanoparticles

Upcoming Congress

Knowledge Experience at Sea TM