Study Of Chemically Synthesized SHI Irradiated CdS Nanostructured Films

P.K. Mochahari1*, Ananta Rajbongshi2, Nava Choudhury3, F. Singh4, K.C. Sarma

1Department of Instrumentation & USIC, Gauhati University, Guwahati 781014, India

2Department of Physics, Gauhati University, Guwahati 781014, India

3Department of Physics, Pub Kamrup College, Baihata Chariali, Kamrup, Assam 781381, India

4Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India

Adv. Mater. Lett., 2015, 6 (4), pp 354-358

DOI: 10.5185/amlett.2015.5719

Publication Date (Web): Mar 21, 2015

E-mail: mochaharip@rediffmail.com

Abstract


Cadmium sulphide (CdS) nanostructured films were prepared by chemical bath deposition (CBD) method at room temperature. The prepared films were subjected to swift heavy ion (SHI) irradiation by using 100 MeV Si8+ ion beams at various fluences from 1x1011 to 1x1013 ions/cm2. Structural, morphological, optical properties of the pristine and irradiated films were characterized by X-ray diffractrometer (XRD), high resolution transmission electron microscope (HRTEM), UV-Vis spectroscopy and Raman spectroscopy. XRD study confirms the formation of nanocrystalline cubic phase in all the films. The crystallite size is found to increase from 7nm to 9 nm and shift of peak positions are observed due to irradiation. The lattice strain and dislocation density of the samples are of the order of 10-3 and 1016 m-2 respectively and the values are found to decrease upon irradiation. HRTEM images show that the shapes of the particles are nearly spherical and the selected area electron diffraction (SAED) pattern of HRTEM have also supported the formation of cubic phase CdS. The optical absorption spectra exhibit shift in the fundamental absorption edge and the optical band gap decreases from 2.585eV to 2.513 upon SHI irradiation. Three intense Raman lines for pristine as well as irradiated CdS have been observed and all the samples show shift in Raman lines relative to bulk CdS due to phonon localization. The SHI irradiation on chemically deposited CdS films is an important tool used for modification of structural, morphological and optical properties of the films for possible applications in device fabrication.

Keywords

Nanostructured CdS films, SHI, XRD, SSP, optical band gap energy.

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment


Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  


The Cause of 100-year Low Carbonated Concrete of the Bridge 


Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections


Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends


Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method


Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane


Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 


Vilsmeier-Haack Transformations under Non Classical Conditions


New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen


An Assessment of Tribological Characteristics under different Operating Condition


Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation


Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites


Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM