Transport Properties And Electronic Structure Of Intercalated Compounds MTiS2 (M = Cr, Mn And Fe)

Yamini Sharma1*, Seema Shukla1, Shalini Dwivedi1, Ramesh Sharma

1Department of Physics, Feroze Gandhi College, Raebareli (U.P.), 229001, India

2Department of Physics, Feroze Gandhi Institute of Technology, Raebareli (U.P.), 228001, India

Adv. Mater. Lett., 2015, 6 (4), pp 294-300

DOI: 10.5185/amlett.2015.5608

Publication Date (Web): Mar 21, 2015

E-mail: sharma.yamini62@gmail.com

Abstract


New material systems of intercalated compounds MTiS2 (M= Cr, Mn, Fe) have been systematically studied by ab-initio method. In order to investigate the effect of charge transfer from guest 3d transition metal atoms to host TiS2, the electronic and transport properties have been calculated using full potential linearized augmented plane wave (LAPW) + local orbitals (lo) scheme, in the framework of density functional theory (DFT) with generalized gradient approximation (GGA) for the purpose of exchange correlation energy functional. From the energy bands and density of states it is observed that the 3d-states of M atoms contribute mainly to the conduction band, which results in increase in electrical and thermal conductivity of highly intercalated TiS2. The calculated electronic component γ which is derived from specific heats of intercalated TiS2 is quite high (2-50 mJ/mol K2) and increases substantially on intercalation. The 3d-states of transition metal M and Ti atoms which split due to the exchange interaction imparts magnetic properties to the MTiS2 systems. The calculated transport properties have been analysed on the basis of the density of states and correctly explain the origin of different magnetic ordered phases.

Keywords

Ab initio calculations, chalcogenides, electronic structure, transport properties.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM