Cover Page December-2011-Advanced Materials Letters

Advanced Materials Letters

Volume 2, Issue 6, Pages 383-391, December 2011
About Cover


Microwave assisted preparation and characterization of biopolymer-clay composite material and its application for chromium detoxification from industrial effluent

A. Santhana Krishna Kumar, S. Kalidhasan, Vidya Rajesh, N. Rajesh*

Department of Chemistry, 2Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani- Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R.R. Dist 500078 (AP), India

Adv. Mater. Lett., 2011, 2 (6), pp 383-391

DOI: 10.5185/amlett.2011.2224

Publication Date (Web): Apr 07, 2012

E-mail: nrajesh05@gmail.com

Abstract

The microwave assisted preparation and characterization of chitosan-surfactant modified NaMMT clay composite material is discussed, followed by its interesting application to detoxify heavy metal chromium. Cr(VI) could be effectively adsorbed in a weakly acidic medium (pH 5) from a large sample volume. The composite material before and after the adsorption of chromium was scrupulously characterized using FT-IR, SEM, XRD and EDX techniques. The XRD study revealed the crystalline nature of the composite material with sharp and symmetric peaks. The bichromate ion forms an ion-pair with the protonated amine group in chitosan and this is reflected in the appearance of a Cr=O peak at 916 cm-1 in IR study. The surface hydroxyl groups in clay can be protonated and this could also serve as a source of electrostatic interaction with the bichromate oxyanion. The material exhibited a superior adsorption capacity of 133 mg g-1 and the adsorption data fitted well with Langmuir and Freundlich isotherm models. The composite adsorbent material exhibits a pore size of 3.5 nm at a maximum pore volume of 0.16 cm3g-1. The BET surface area of the material obtained from N2 adsorption was found to be 52 m2g-1. The experimental data also showed a good correspondence to the pseudo-second-order kinetics and the sorption thermodynamics correlated to the endothermic nature of the adsorption. The adsorbent could be regenerated using ascorbic acid or sodium sulfite which is indicative of the greener aspect in the methodology.

Keywords

Chitosan, surfactant-modified montmorillonite, microwave assisted method, chromium(VI), regeneration

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM