Formation of nanowires from pentacene derivatives by single-particle triggered linear polymerization Formation of nanowires from pentacene derivatives by single-particle triggered linear polymerization
1Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
2Japan Atomic Energy Agency Takasaki, Gunma, Japan
3Center for Collaborative Research, Anan National College of Technology, Tokushima, Japan
Adv. Mater. Lett., 2015, 6 (2), pp 99-103
DOI: 10.5185/amlett.2015.5720
Publication Date (Web): Feb 08, 2015
Copyright © IAAM-VBRI Press
E-mail: t-sakurai@chem.eng.osaka-u.ac.jp, seki@chem.eng.osaka-u.ac.jp
The present paper highlights the development of organic nanowires from small-molecular organic compounds through intra-track chemical reactions by using ion beams. Thin films of pentacene derivatives, 6,13-bis(triethylsilylethynyl)pentacene (TES-Pn) and 6,13-bis((triisopropylsilyl)ethynyl)pentacene (TIPS-Pn), were subjected to high-energy particle irradiation at a fluence of 108–1010 cm–2 and thereafter developed by organic solvents. This method, referred as Single-particle Triggered Linear Polymerization (STLiP), afforded the isolation of wire-shaped nanomaterials on a substrate that were visualized by atomic force microscopy and scanning electron microscopy. These derivatives exhibited high enough propagation and cross-linking reaction efficiencies (G) as GTES-Pn of > 7 and GTIPS-Pn of > 5 (100 eV)–1, whose values are significantly larger than those observed for previously studied simple cross-linking reactions observed in other polymeric materials, being apparently in the G-value range of chain reactions. On the other hand, the pristine pentacene and derivative without (trialkylsilyl)ethynyl moiety did not give any nanowires. Considering these observations, highly efficient intra-track propagation/polymerization/cross-linking reactions would take place due to the introduction of (trialkylsilyl)ethynyl groups, resulting in the formation of one-dimensional nanostructures based on small molecules. The STLiP technique serves as a versatile and easy nanofabrication tool for small molecular materials and the resultant nanowires with high functional density are potentially usable as optical, electronic, and sensor materials.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India