1Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
2Japan Atomic Energy Agency Takasaki, Gunma, Japan
3Center for Collaborative Research, Anan National College of Technology, Tokushima, Japan
Adv. Mater. Lett., 2015, 6 (2), pp 99-103
DOI: 10.5185/amlett.2015.5720
Publication Date (Web): Feb 08, 2015
Copyright © IAAM-VBRI Press
E-mail: t-sakurai@chem.eng.osaka-u.ac.jp, seki@chem.eng.osaka-u.ac.jp
The present paper highlights the development of organic nanowires from small-molecular organic compounds through intra-track chemical reactions by using ion beams. Thin films of pentacene derivatives, 6,13-bis(triethylsilylethynyl)pentacene (TES-Pn) and 6,13-bis((triisopropylsilyl)ethynyl)pentacene (TIPS-Pn), were subjected to high-energy particle irradiation at a fluence of 108–1010 cm–2 and thereafter developed by organic solvents. This method, referred as Single-particle Triggered Linear Polymerization (STLiP), afforded the isolation of wire-shaped nanomaterials on a substrate that were visualized by atomic force microscopy and scanning electron microscopy. These derivatives exhibited high enough propagation and cross-linking reaction efficiencies (G) as GTES-Pn of > 7 and GTIPS-Pn of > 5 (100 eV)–1, whose values are significantly larger than those observed for previously studied simple cross-linking reactions observed in other polymeric materials, being apparently in the G-value range of chain reactions. On the other hand, the pristine pentacene and derivative without (trialkylsilyl)ethynyl moiety did not give any nanowires. Considering these observations, highly efficient intra-track propagation/polymerization/cross-linking reactions would take place due to the introduction of (trialkylsilyl)ethynyl groups, resulting in the formation of one-dimensional nanostructures based on small molecules. The STLiP technique serves as a versatile and easy nanofabrication tool for small molecular materials and the resultant nanowires with high functional density are potentially usable as optical, electronic, and sensor materials.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study