1Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, Odisha India
2Department of Materials Engineering, Indian Institute of Science, Bangalore, India
3Condensed Matter Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
4School of Physical Sciences, National Institute of Education and Research, Bhubaneswar 751005, Odisha, India
Adv. Mater. Lett., 2014, 5 (12), pp 699-705
DOI: 10.5185/amlett.2014.nib503
Publication Date (Web): Dec 02, 2014
Copyright © IAAM-VBRI Press
E-mail: pramitam@iopb.res.in
We report the optical tunability through defect states created in silicon by 1 MeV cobalt ion implantation at room temperature in the fluence range of 5 × 1013 to 5 × 1015 ions cm-2. Atomic force microscopy studies reveal the surface nanostructures with maximum roughness of 0.9 nm at a critical fluence of 5 × 1015 ions cm-2 which is reduced to 0.148 nm with further increase of fluence. The enhanced native oxide layers after Co ion implantation observed from X-Ray photoelectron spectroscopy studies confirm the presence of surface defects. The combined effect of nanostructures formation and amorphization leads to band gap tailoring. For low fluence, the nanostructures produced on the surface result in an enhanced absorption in the entire UV-Visible region with a simultaneous reduction in band gap of 0.2 eV in comparison to pristine Si whereas high fluence implantation results in interference fringes which signifies the enhancement in refractive index of the top implanted layer ensuing increase in band gap of 0.3 eV. Combined amorphous and crystalline phases of nanostructured surface with tunable optical absorption may have potential applications in solar cell, photovoltaics and optical sensors.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study