Structural and Hydrogen Storage Properties Of Mg-x Wt% ZrCrMn Composites

Ankur Jain1,2,3*, Pragya Jain1, Shivani Agarwal1,3, Paola Gislon3, Pier Paolo Prosini3, I.P. Jain1

1Centre for Non-Conventional Energy Resources, University of Rajasthan, Jaipur, India

2Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima 739-8530, Japan

3ENEA-IDROCOMB, C.R. Casaccia, Via Anguillarese 301, 00060 S. Maria di Galeria, Rome, Italy

Adv. Mater. Lett., 2014, 5 (12), pp 692-698

DOI: 10.5185/amlett.2014.7588

Publication Date (Web): Dec 02, 2014



Magnesium hydride is a promising material for hydrogen storage due to its high storage capacity i.e.7.6wt%. But its high stability i.e. high desorption temperature (~350? oC) limits its practical application towards hydrogen economy. Moreover the kinetics is also too slow even at high temperatures. Composite formation with Zr based laves phase alloys, especially ZrCr2 family, is an effective method to improve the hydriding properties of MgH2. This work presents the synthesis, structural, morphological, and hydrogenation properties of Mg-x wt% ZrCrMn composites. Both phases i.e. Mg & ZrCrMn remain their presence after milling and several hydriding cycles as well. SEM results suggest the homogeneous distribution of alloy particles on Mg matrix. Pressure composition temperature (PCT) analysis shows a reduction in desorption temperature down to 250oC for these composites. TG experiments suggest a total hydrogen capacity of 5.9% and 4.35% for x =25, 50 in Mg-x wt% ZrCrMn composites respectively. The enthalpy of hydride formation is also calculated using Van’t Hoff plots, which is found similar to the parent material i.e. MgH2. A remarkable enhancement in the kinetics of hydrogen absorption / desorption is reported here by forming these composites.


Hydrogen storage, magnesium, ball milling, kinetics, X-ray diffraction, microstructures

Upcoming Congress

Knowledge Experience at Sea TM