Structural and magnetic properties of undoped and Mn doped CdS nanoparticles prepared by chemical co Structural and magnetic properties of undoped and Mn doped CdS nanoparticles prepared by chemical co
Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
Adv. Mater. Lett., 2014, 5 (11), pp 671-677
DOI: 10.5185/amlett.2014.1574
Publication Date (Web): Nov 09, 2014
Copyright © IAAM-VBRI Press
E-mail: nhptl123@yahoo.com
Undoped and Mn doped CdS nanoparticles with varying Mn concentration of 10,15 and 20 mol % have been prepared by chemical co-precipitation method with polyvinylpyrrolidone (PVP) as capping agent at room temperature. EDAX has shown that no foreign impurities are present in the synthesized nanoparticles and X-ray diffraction (XRD) revealed that undoped and Mn doped CdS nanoparticles possess cubic phase with crystallite size ranging from 4-6 nm. Transmission electron microscopy (TEM) images indicated that nanoparticle sizes are between 2-6 nm and exhibits polycrystalline nature as seen from selected area electron diffraction (SAED) pattern. Raman spectra of undoped and Mn-doped CdS nanoparticles have shown 1LO and 2LO phonon modes and their intensity ratio decreases as Mn concentration increases. Magnetic susceptibility clearly pointed out that undoped CdS behaves as diamagnetic whereas Mn doped CdS as paramagnetic and varies nonlinearly with Mn concentration in CdS. Rapid increase in magnetization below 50 K temperature is observed in M-T curves which can be assigned to Mn ions isolated in CdS crystal field or extrinsic defects. The M-H curve at 5 K and 300 K for 20% Mn doped CdS nanoparticles at different magnetic fields showed no hystersis. In near future Mn doped CdS nanoparticles can be used for application in dilute magnetic semiconductor and fabrication of solar cells. The result and discussion drawn from this work are elaborated in detail in the paper.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India