Department of Physics, Polymer Nanotech Laboratory, RTM Nagpur University, Nagpur 440033, India
Adv. Mater. Lett., 2014, 5 (7), pp 389-395
DOI: 10.5185/amlett.2014.amwc.1037
Publication Date (Web): Apr 27, 2014
Copyright © IAAM-VBRI Press
E-mail: sbkondawar@yahoo.co.in
Zinc oxide (ZnO) nanoparticles were synthesized by simple route of sol-gel method and nanofibers of polyaniline (PANI) and PANI/ZnO nanocomposites prepared using the electrospinning technique. Electrospun nanofibers of PANI and PANI/ZnO nanocomposites were collected on aluminum substrate for characterization and on Cu-interdigited electrodes to prepare chemiresistor sensor. Electrospun nanofibers of PANI and PANI/ZnO nanocomposites have been characterized by UV-Visible (UV-Vis), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). UV-Visible spectra of nanofibers of PANI/ZnO nanocomposites show hypsochromic shift as that of PANI and some interaction due to ZnO in PANI matrix. The observed changes in the FTIR spectra of the fibers of PANI/ZnO nanocomposites are assosciated with the formation of H-bonding between ZnO and the N-H group present in the PANI chains. X-ray diffraction patterns exhibits hexagonal wurtzite structure of ZnO and broad amorphous peaks of PANI. Heterogeneous structures with fibrous characteristics of diameter less than 300nm of PANI/ZnO nanocomposites are identified in the SEM images. The electrical properties were characterized by I-V characteristic measurements. The changes in resistance of the chemiresistor sensor were utilized for detection of HCl and NH3 chemical vapour at room temperature. The resistance of the sensors was found to be decreased when they were exposed to HCl vapours whereas the resistance of the sensors was found to be increased when they were exposed to NH3 vapours. It was observed that PANI/ZnO nanocomposite sensor shows a high response and sensitivity with good repeatability as compared to that of pure PANI. Sensitivity result shows that PANI/ZnO nanocomposite is highly sensitive to chemical vapours even at room temperature and at very low concentration.
Polyaniline/ZnO nanocomposites, electrospun nanofibers, chemiresister, chemical sensor
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study