Cover Page June-2014-Advanced Materials Letters

Advanced Materials Letters

Volume 5, Issue 6, Pages 360-365, June 2014
About Cover


Thermal And Frequency Dependance Dielectric Properties Of Conducting Polymer/ Fly Ash Composites

Subhash B. Kondawar1*, A. D. Dahegaonkar2, V. A. Tabhane3, D. V. Nandanwar4

1Department of Physics, Polymer Nanotech Laboratory, R.T.M. Nagpur University, Nagpur, India

2N. S. Science and Arts College Bhadrawati, Dist. Chandrapur, India

3Department of Physics, Pune University, Pune, India

4Department of Physics, Shri Mohata College of Science, Nagpur, India

Adv. Mater. Lett., 2014, 5 (6), pp 360-365

DOI: 10.5185/amlett.2014.amwc.1036

Publication Date (Web): Mar 23, 2014

E-mail: sbkondawar@yahoo.co.in

Abstract

With more than 100 million tonnes of fly ash produced in India, use of fly ash for the preparation of polyaniline – fly ash composites will in no way help in its bulk utilization. Still the authors have made an effort towards the better utility of fly ash by synthesizing polyaniline –fly ash composites for electronic devices where the requirement of dielectric materials with good electrical conductivity. There is great challenge to use the waste of thermal power stations in the form of fly ash as reinforcement for the conducting polymers to be good dielectric materials. In this paper, we report the use of fly ash to prepare conducting polymer composite materials. In-situ polymerization of aniline was carried out in the presence of fly ash (FA) to synthesize conducting polyaniline–fly ash composites (PANI-FA) by chemical oxidation method.   The PANI-FA composites have been synthesized with various compositions (10, 20, 30, 40 and 50 wt %) of fly ash in conducting polymer matrix. The surface morphology of these composites was studied by scanning electron microscopy (SEM). These composites were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD), Fourier Transform Infra-Red (FTIR) Spectroscopy to investigate surface morphology and structure of the composites. Thermal and frequency dependence dielectric properties of all the synthesized composites have been studied with the help of impedance analyzer. By incorporating fly ash into conducting polymers, dielectric constant of the composites was found to be improved as compared to that of pure conducting polymers. It was also noticed that the dielectric constant of all the composites found to be decreased with increasing frequency but increased with increasing temperature. The results obtained for these composites are of greater scientific and technological interest for good quality capacitors.

Keywords

Conducting polymers, polyaniline, fly-ash, composites, dielectric constant

Current Issue

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare


Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization


Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system


Innovative Graphene-PDMS sensors for aerospace applications 


Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers


Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates


Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature


Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells


Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity


Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process


Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries


Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration


Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption


Previous issues

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Upcoming Congress

Knowledge Experience at Sea TM