Stability of ZnO nanorods coated on the channel wall under continuous flow conditions Stability of ZnO nanorods coated on the channel wall under continuous flow conditions
Chemical Engineering Department, Ege University, 35100, Bornova, Turkey
Adv. Mater. Lett., 2014, 5 (6), pp 325-332
DOI: 10.5185/amlett.2014.amwc.1020
Publication Date (Web): Mar 23, 2014
Copyright © IAAM-VBRI Press
E-mail: berrin.ikizler@ege.edu.tr
The damage given to the ZnO nanorod coating immobilized at the bottom of a rectangular channel by water flow is assessed in this work. The experiments were conducted in complete darkness to determine the inherent stability of the nanorod coating without the interfering effect of UV radiation. The quality and morphology of the nanorod arrays before and after use were determined by x-ray diffraction, scanning electron microscopy; rod breakage, by dynamic light scattering; and the extent of erosion, by concentration and weight measurements. The effect of pH of the flowing water in the range 4£pH10, and the effect of the volumetric flow rate in the range, 3.3-33 cm3/s are investigated in this work as parameters. ZnO erosion reaches a low-level plateau in the pH range of 6£pH£10. Within this range, water velocity and alignment of the nanorods control the extent of dissolution. Dissolution of ZnO nanorods essentially takes place on the polar (0001)-Zn plane of ZnO, resulting in the formation of serrated surfaces. Furthermore, inclined rods joining at the top surface is subjected to further dissolution through pit formation originating at the junction interface, and extending outwards. ZnO nanorod arrays could be used as a photocatalyst in the photocatalytic water treatment processes, where the dissolution from nanorods is in the range of 2.0−2.5 wt% after 24 h of operation under a flow rate of 3.30 cm3/s (≈12 L/h), well under the requirements of World Health Organization.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India