Department of Mechanical Engineering, The University of Shiga Prefecture, Hassaka 2500, Hikone, Shiga 522-8533, Japan
Adv. Mater. Lett., 2014, 5 (5), pp 248-254
DOI: 10.5185/amlett.2014.amwc1012
Publication Date (Web): Mar 09, 2014
Copyright © IAAM-VBRI Press
E-mail: tanabe@mech.usp.ac.jp
A new surface modification method “laser quenching after coating” using a high power diode laser equipped with a 2-dimensional galvano-scanner unit was developed to process a larger area of ceramic coated steel uniformly and efficiently. The laser irradiation tests for 3 kinds of ceramic-coated steels: CrAlN, TiAlN and CrN, were carried out with the scanning laser, and the appropriate irradiation conditions to achieve the uniformly quenched substrate without any surface damage were clarified for these ceramic-coated steels. The area of the substrate surface wider than the laser spot size could be easily quenched by the scanning laser. The adhesive strength, the film hardness of the laser-irradiated regions and the deformation caused by laser irradiation were evaluated. Laser quenching with the scanning laser can effectively improve the adhesive strength and substrate hardness without any detrimental effect on the film hardness of the ceramic-coated specimens. In the deformation of the laser-irradiated specimens, two features were recognized; one is the bending, and the other is the expansion of laser-irradiated part. It was found that the deformation of ceramic-coated steel by laser irradiation under the same heat input condition does not depend on the kind of ceramic thin film but on the steel type of the substrate. It was concluded that “laser quenching after coating” with scanning laser could easily improve the adhesive strength and substrate hardness without any detrimental effect on the film hardness of large surface areas in the tested all types of ceramic-coated specimens.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study