Cover Page May-2014-Advanced Materials Letters

Advanced Materials Letters

Volume 5, Issue 5, Pages 236-241, May 2014
About Cover


Functional Nanomaterials For Energy And Sustainability

Antonios Kelarakis*

Centre for Materials Science, School of Forensic and Investigative Sciences, University of Central Lancashire, Preston PR12HE, UK

Adv. Mater. Lett., 2014, 5 (5), pp 236-241

DOI: 10.5185/amlett.2014.amwc1026

Publication Date (Web): Mar 09, 2014

E-mail: akelarakis@uclan.ac.uk

Abstract

In view of the continuous decline in fossil fuel reserves, at a time when energy demands are steadily increasing, a diverse range of emerging nanotechnologies promise to secure modern solutions to the prehistoric energy problem. Each one of those distinct approaches capitalizes on different principles, concepts and methodologies to address different application requirements, but their common objective is to open a window to a sustainable energy future. Consequently, they all deserve substantial (though not necessarily equal) consideration from the scientific and engineering community. In this review we present bottom-up strategies that show great promise for the development of a new generation of advanced materials for energy applications without compromising the public safety or the environment.

Keywords

Nanomaterials, energy, sustainability, batteries, fuel cells

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM