Department of Physics, rashtrasant Tukdoji Maharaj Nagpur University, Nagpur 440033, M.S. India
Adv. Mater. Lett., 2014, 5 (2), pp 61-66
DOI: 10.5185/amlett.2013.fdm.03
Publication Date (Web): Jan 27, 2014
Copyright © IAAM-VBRI Press
E-mail: saha275@yahoo.com
Dielectric behaviour and ionic conductivity of nanostructured Ce0.9Gd0.1O2-d(GDC) are investigated to probe morphology influence of grains on ion transport mechanism at microscopic level. GDC are synthesized in two different morphologies of grains (rod-shape and round-shape particles). TEM study confirmed shape and size; diameter of rods are observed around 20 nm and length are in range of 50-100 nm, while diameter of round particles are found about 10 nm. The dielectric behaviour is studied using the dielectric functions such as dielectric permittivity (e’) and electric modulus (M”). The ionic conductivity is studied by temperature dependent impedance spectra. Both these properties are observed to be finely manipulative by morphology and size. Activation energy of charge carrier relaxation and charge carrier orientation are calculated from impedance spectra and electric modulus spectra and are found to be more in rod-shape GDC. Dielectric relaxation times are also observed to be more for GDC rods. This study provides clear evidence that grain shape and size affect on dopant-oxygen vacancies ineraction, which affect on ion migration and hence ionic conductivity. 1D morphology of grains in oxy-ion conductor has high potential to enhance ionic conductivity.
Gd-doped ceria, rods-shape and round-shape morphology, ionic transport mechanism,dieletric relaxation.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study