Grain Shape Effect On Dielectric Properties And Ionic Conductivity Of Gd-doped Ceria

S. A. Acharya*, K. Singh

Department of Physics, rashtrasant Tukdoji Maharaj Nagpur University, Nagpur 440033, M.S. India

Adv. Mater. Lett., 2014, 5 (2), pp 61-66

DOI: 10.5185/amlett.2013.fdm.03

Publication Date (Web): Jan 27, 2014



Dielectric behaviour and ionic conductivity of nanostructured Ce0.9Gd0.1O2-d(GDC) are investigated to probe morphology influence of grains on ion transport mechanism at microscopic level. GDC are synthesized in two different morphologies of grains (rod-shape and round-shape particles). TEM study confirmed shape and size; diameter of rods are observed around 20 nm and length are in range of 50-100 nm, while diameter of round particles are found about 10 nm. The dielectric behaviour is studied using the dielectric functions such as dielectric permittivity (e’) and electric modulus (M”). The ionic conductivity is studied by temperature dependent impedance spectra. Both these properties are observed to be finely manipulative by morphology and size. Activation energy of charge carrier relaxation and charge carrier orientation are calculated from impedance spectra and electric modulus spectra and are found to be more in rod-shape GDC. Dielectric relaxation times are also observed to be more for GDC rods. This study provides clear evidence that grain shape and size affect on dopant-oxygen vacancies ineraction, which affect on ion migration and hence ionic conductivity. 1D morphology of grains in oxy-ion conductor has high potential to enhance ionic conductivity.


Gd-doped ceria, rods-shape and round-shape morphology, ionic transport mechanism,dieletric relaxation.

Current Issue

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Previous issues

Advanced Materials Congress Celebrating 10th Years of Establishment

Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  

The Cause of 100-year Low Carbonated Concrete of the Bridge 

Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections

Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends

Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method

Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane

Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 

Vilsmeier-Haack Transformations under Non Classical Conditions

New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen

An Assessment of Tribological Characteristics under different Operating Condition

Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation

Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites

Upcoming Congress

Knowledge Experience at Sea TM