1Foundry Group, CSIR-Central Mechanical Engg. Research Institute (CSIR-CMERI), Durgapur 713209, India
2Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
3Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
Adv. Mater. Lett., 2013, Current Issue , 4 (9), pp 668-681
DOI: 10.5185/amlett.2013.2417
Publication Date (Web): Aug 10, 2013
Copyright © IAAM-VBRI Press
E-mail: prosenjit@cmeri.res.in
The present work describes an experimental evaluation of yield strength, tensile strength, initiation fracture toughness and Finite element simulations of fracture behaviour for both bulk and ultrafine-grained (UFG) 7075 Al Alloy. The 7075 Al alloy has been rolled for different thickness reductions (40%, 70% and 90%) at cryogenic (liquid nitrogen) temperature, and its mechanical properties and microstructural morphology have been investigated. Rolling of the Al alloy at cryogenic temperature suppresses the dynamic recovery and grain growth, which leads to grain fragmentation. Dislocation cells formed during consecutive rolling passes, transformed into fully formed UFG (600 nm) up to 70% thickness reduction. Grain size gets reduced further when 90% thickness reduction is achieved. Incremental crack growth simulations have been carried out by commercial software ABAQUS under quasi-static loading using deformation plasticity theory based on Griffith energy concept. J-integral, stress along crack path, effect of crack and specimen size over J-integral, stress distribution and plastic dissipation ahead of the crack tip have been investigated for some practical crack problems under mechanical and thermo-mechanical loading. The numerical examples indicates a significant enhancement in crack arrest capabilities of UFG alloys for the same boundary conditions because of decreasing J values with increasing % thickness reduction. This is attributed to the improved mechanical properties (UTS: 625 MPa and YS: 610 MPa) of the cryorolled alloy which hinders the onset of plasticity, results from ultrafine-grain formation.
Aluminum, UFG alloy, cryorolling, mechanical testing, fracture toughness, FEM.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study