Conducting polymer; nanostructure; swift heavy ion irradiation; TEM; XRD; UV-Vis; FTIR; m Conducting polymer; nanostructure; swift heavy ion irradiation; TEM; XRD; UV-Vis; FTIR; m
Materials Research Laboratory, Dept. of Physics, Tezpur University, Tezpur 784028, Assam, India
Adv. Mater. Lett., 2013, Ion Beam Special Issue, 4 (6), pp 433-437
DOI: 10.5185/amlett.2012.ib.109
Publication Date (Web): Mar 16, 2013
Copyright © IAAM-VBRI Press
E-mail: ask@tezu.ernet.in
Structural and conformational modifications in conducting polymer nanostructures viz., Polyaniline (PAni) nanofibers induced by swift heavy ion (SHI) irradiation have been investigated employing TEM, XRD, UV-Vis, FTIR and micro-Raman spectroscopy. Upon interaction with the highly energetic ions, PAni nanofibers are fragmented and get amorphized. The local range of order is found to decrease with a corresponding increase in the concentration of point defects and dislocations leading to the enhancement in strain. Vibrational spectra of the pristine and SHI irradiated PAni nanofibers studied using FTIR and micro-Raman (μR) spectroscopy indicate conformational changes in PAni nanofibers upon SHI irradiation. Loss of π-stacking due to the enhancement in the torsion angle between Cring-N-Cring upon irradiation is indicative of strong electrostatic interaction between the electron rich C-N site in the aromatic rings of PAni chains and the ion beam. The most significant variation in PAni nanofibers upon SHI irradiation is the transformation of para di-substituted benzene (benzenoid) structure of PAni into the quinone di-imine (quinoid) structures; a phenomenon that has been simultaneously observed in both the FTIR and Raman spectra. The presence of two main peaks representing the same structures in PAni nanofibers in both the Raman and IR spectra is because of the presence of delocalized sp2 phases and local disorder in PAni nanofibers, which gives rise to electrical and mechanical fluctuations that destroy the symmetry rules.
Conducting polymer, nanostructure, swift heavy ion irradiation, TEM, XRD, UV-Vis, FTIR, micro-Raman spectroscopy.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India