Cover Page March-2013-Advanced Materials Letters

Advanced Materials Letters

Volume 4, Issue 3, Pages 230-234, March 2013
About Cover


Friction Stir Processing Of Intermetallic particulate Reinforced Aluminum Matrix composite

G. Ashok Kumar1, I. Dinaharan2*, S. J. Vijay2, N. Murugan1

1Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore 641014, Tamil Nadu, India

2School of Mechanical Sciences, Karunya University, Coimbatore 641114, Tamil Nadu, India

Adv. Mater. Lett., 2013, 4 (3), pp 230-234

DOI: 10.5185/amlett.2012.7398

Publication Date (Web): Jan 21, 2013

E-mail: dinaweld2009@gmail.com

Abstract

Friction stir processing (FSP) is a novel solid state technique to refine the microstructure of metallic materials. The objective of this work is to apply FSP to change the morphology and distribution of intermetallic particles and achieve property enhancement. AA6061/8wt. % Al3Zr composite was produced by the in situ reaction of molten aluminum and inorganic salt K2ZrF6. Optical and scanning electron micrographs revealed a uniform distribution of needle shape Al3Zr particles in the aluminum matrix. The Al3Zr particles were located in the inter granular spaces. A double pass FSP was carried out using a tool rotational speed of 1200 rpm, processing speed of 50 mm/min and axial force of 8 kN. A tool made of HCHCr steel; oil hardened to 62 HRC, having a hexagonal profile was used. The needle shape Al3Zr particles were fragmented and converted into a spherical shape subsequent to FSP which resulted an increase in the hardness of the composite.

Keywords

Metal matrix composite, casting, friction stir processing,intermetallic particle.

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM