Microwave synthesis; 2-thiophenecarboxaldehyde; thermal analyses; electrical conductivity; XRD. Microwave synthesis; 2-thiophenecarboxaldehyde; thermal analyses; electrical conductivity; XRD.
Synthetic Inorganic & Coordination Chemistry Laboratories Department of Chemistry, Dr. H.S. Gour Central University, Sagar (M.P.) 470003, India
Adv. Mater. Lett., 2012, Current Issue, 3 (3), pp 213-219
DOI: 10.5185/amlett.2011.9307
Publication Date (Web): Jun 10, 2012
Copyright © IAAM-VBRI Press
E-mail: apm19@rediffmail.com and jainrajchem@gmail.com
The coordination complexes of Co(II), Ni(II) and Cu(II) derived from 2-thiophenecarboxylidene-3-chloro-4-fluoroaniline (TCC) and 2-thiophenecarboxylidene-4-fluoroaniline (TCF) have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, FT-IR, FAB-mass, molar conductance, electronic spectra, ESR, thermal, magnetic susceptibility, electrical conductivity and XRD analysis. The complexes are coloured and stable in air. Analytical data revealed that all the complexes exhibited 1:2 (metal:ligand) ratio with the coordination 4 or 6. FAB-mass and thermal data show degradation pattern of the complexes. The thermal behavior of metal complexes shows that the hydrated complexes loses water molecules of hydration in the first step; followed by decomposition of ligand molecules in the subsequent steps. The crystal system, lattice parameter, unit cell volume and number of molecules in unit cell in the lattice of complexes have been determined by XRD analysis. XRD patterns indicate crystalline nature for the complexes. The solid state electrical conductivity of the metal complexes has also been measured. Solid state electrical conductivity studies reflect semiconducting nature of the complexes.
Microwave synthesis, 2-thiophenecarboxaldehyde,thermal analyses, electrical conductivity, XRD
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India