Cover Page June-2010-Advanced Materials Letters

Advanced Materials Letters

Volume 1, Issue 1, Pages 67-74, June 2010
About Cover


Characterization Of Chitosan-chondroitin Sulfate Blended Membranes And Effects On The Growth Of Corneal Cells

Zi-Ang Yao1,2* and Hai-Ge Wu1,2

1Bioengineering College of Dalian University, Dalian 116622, China

2Liaoning Key Laboratory of Bioorganic Chemistry, Dalian University, Dalian 116622, China

Adv. Mater. Lett., 2010, 1 (1), pp 67-74

DOI: 10.5185/amlett.2010.4113

Publication Date (Web): Apr 08, 2012

E-mail: ziangyao@163.com

Abstract

In order to construct a suitable scaffold for corneal cell culture and transplantation in vitro, different chitosan-chondroitin sulfate blended membranes were prepared and the properties of blended membranes were studied. Corneal stroma cells and corneal endothelial cells were seeded onto the blended membrane surface and the effects of the blended membranes on corneal cell attachment and metabolism were investigated. The results showed that chitosan and chondroitin sulfate had good compatibility in blended membranes. Chondroitin sulfate improved the homogeneousness, crystallization, transparency, and tensile strength and decreased the water content of the blended membrane. Within the blending ratio of 1:0.1, chondroitin sulfate reduced the damage of chitosan membranes to cells and improved the biocompatibility between cells and membranes. Corneal cells grew and formed a confluent monolayer on chitosan-chondroitin sulfate blended membranes (CH-CS3). All results indicated that the blended membranes of chitosan and chondroitin sulfate could be used as a scaffold for corneal cell culture in vitro and have potential to be used as carriers for corneal endothelial cell transplantation.

Keywords

Chitosan, chondroitin sulfate, blended membrane, corneal endothelial cell, transplantation

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM