Warning (2): array_combine(): Both parameters should have an equal number of elements [APP/Controller/ArticlesController.php, line 248]
Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Shubhajit Roy Chowdhury*, Gaurav Sharma, Yashika Arora

Biomedical Systems Laboratory, School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, India

Adv. Mater. Lett., 2020, 11 (3), 20031482 (1-10)

DOI: 10.5185/amlett.2020.031482

Publication Date (Web): Feb 26, 2020

Email: src@iitmandi.ac.in


Near-infrared spectroscopy (NIRS) is increasingly becoming popular for monitoring cerebral oxygenation level by measuring the time variations in the concentrations of oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (Hb). Studies on cross section of the cerebro-vascular artery suggest that impaired haemodynamics of cerebrovascular artery is followed by transient ischemic attack (TIA) and ischemic stroke. Here, cerebrovascular reactivity (CVR) signifies the dilation capacity of blood vessels, and is a remarkable bio-marker for brain vascular reserve. The CVR may be effectively studied by monitoring cerebral oxygenation level, which if coupled with anodal transcranial direct current stimulation can serve as an important biomarker to classify between stroke and non-stroke patients, thereby providing for an imminent screening and monitoring tool. The neural activity of cerebral cortex may be controlled with transcranial direct current stimulation (tDCS) where the NIRScan be used to capture CVR during anodal tDCS. The responses measured during NIRS are measured through temporal changes in HbO2 and Hb concentration — which provide more information than those available from basic fMRI. This article first reviews the general principles and progress in the development of NIRS, throwing a light on the applications of NIRS in stroke diagnosis.


Near infrared spectroscopy, cerebral hemodynamics, cerebral oxygenation, cerebrovascular reactivity, transcranial direct current stimulation.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM