Magnetic Properties of Intercalated Gr/Ni (111) System

Sergey M. Dunaevsky1,2,*, Evgeniy K. Mikhailenko1,2, Igor I. Pronin3

1Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia
2Saint-Petersburg Electrotechnical University "LETI" St. Petersburg, 197376, Russia
3Ioffe Institute, St. Petersburg, 194021, Russia

 

Adv. Mater. Lett., 2019, 10 (9), pp 633-636

DOI: 10.5185/amlett.2019.0021

Publication Date (Web): Sep 03, 2019

E-mail: smd2000@mail.ru 

Abstract


Intercalation of graphene (Gr) with transition metals is perspective for creating magnetic tunnel junctions and structures of the type graphene/ferromagnetic metal/substrate with perpendicular magnetic anisotropy (PMA). The paper presents the results of first-principle calculations of the magnetic properties for Gr/Fe (Co)/Ni (111) systems. Ab initio calculations of the electron spectrum of the systems were performed in the framework of the spin density functional theory (SDFT). Kohn-Sham single-particle spectra were used to determine total energies of the systems for different spin quantization axes, partial and total densities of the electron states, and also magnetic moments of all atoms. Then, using these magnetic moments, the energies of dipole-dipole interaction were obtained and the magnetic crystalline anisotropy (MCA) of the systems was studied. © VBRI Press.

Keywords

Graphene, spin density functional theory, crystalline magnetic anisotropy.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM