Validation of Advanced Constitutive Models for Accurate FE Modeling of TPU

Robert Eberlein*,1, Lucian Pasieka2 and Dimosthenis Rizos3

1Institute of Mechanical Systems, Zurich University of Applied Sciences, Winterthur, Switzerland

2,3Eugen Seitz AG, Wetzikon, Switzerland

DOI: 10.5185/amlett.2019.0031

Publication Date (Web): Jun 24, 2019

Corresponding author: E-mail: ebei@zhaw.ch

Abstract

Thermoplastic polyurethanes (TPU) have become preferred materials for demanding high strain rate applications in many industries throughout past years. Due to their comparatively high abrasion resistance and toughness, TPU materials form an excellent fit for critical components sustaining high pressures in combination with harsh ambient conditions. This presentation illustrates a comparatively new field of critical applications for TPU components. While the operational pressures remain rather moderate at maximum 50 bar, challenges arise from high-frequency, cyclic loading conditions. In order to design robust dynamic TPU components, two main tasks must be accomplished: (i) visco-elastic-plastic material modeling and parameter identification, and (ii) material validation under realistic dynamic loading conditions on system level by means of advanced finite element (FE) simulations. This article puts (i) emphasis on the material calibration process and (ii) specifically demonstrates material validation on system level for selected TPU materials. In this context strain rate dependency of various TPU grades is discussed, which illustrates deficiencies of classical material modeling techniques available in commercial finite element software versus advanced nonlinear models. Eventually, recommendations are provided for an efficient but also accurate material calibration process of solid TPU materials that can significantly enhance product innovation processes. © VBRI Press.

Keywords

TPU, System Validation, Material Calibration, FE Simulation.

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM