Cover Page September-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 9, Pages 643-650, September 2019
About Cover

Materials modelling has established itself as an essential analysis not only to study the insight of complex physical phenomena appearing in the soft or condensed matter but also to realize the emerging trend of 'reverse engineering' as a keystone for technological innovations. The cover photo of this September 2019 issue describes the bio interaction between graphene and enzyme protein for bioelectronics applicable in battery, fuel cell and biosensing applications and dedicated to celebrating the 6th anniversary of Nobel Prize in Chemistry on “Multiscale models for complex chemical systems”.


Deformation Texture Modelling by Mean-Field and Full-Field Approaches

Jurij J. Sidor1,* and Qingge Xie2

1Eötvös Loránd University (ELTE), Faculty of Informatics, Savaria Institute of Technology, Károlyi Gáspár tér 4, Szombathely, 9700, Hungary

2Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing, 100083, China

Adv. Mater. Lett., 2019, 10 (9), pp 643-650

DOI: 10.5185/amlett.2019.0030

Publication Date (Web): Jun 18, 2019

E-mail: js@inf.elte.hu

Abstract

An analysis on modeling the rolling textures in Al alloy by means of mean-field and full-field approaches is presented in the current contribution. The mean-field simulations were performed by the Taylor-type homogenization approach, called Alamel model, which takes into account a short-range interaction between the grains in a polycrystalline system. In order to account for the intra-grain deformation phenomena, the crystal elasto-visco-plastic finite-element model was employed. The method of strain path approximation on the quality of texture prediction was likewise discussed. The deformation history was calculated with different analytical approaches and a finite element model with isotropic mechanical properties, which accounted for various degree of accuracy. It was shown that the analytical approximations accoupled with the crystal plasticity model employed are capable of carrying out texture simulations close to the one performed with the crystal plasticity model with the deformation history obtained by means of the finite element model. Comparison of modelled and experimental textures as well as analysis of qualitative texture indicators suggest that an improvement in texture simulation can be achieved by considering heterogeneities of deformation flow across the thickness and taking into account the inhomogeneous nature of deformation inside each grain. © VBRI Press.

Keywords

Al alloy, Texture, Crystal plasticity modelling, Alamel model

Current Issue

Current Global Scenario of Electric Vehicles


Review on Detection of Phenol in Water 


Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review


Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight


Plasma Activated Water as a Source of Nitrogen for Algae Growth


Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application


Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System


Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources


Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method


Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance


Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye


Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 


Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect


Previous issues

Wearable Healthcare Devices

Nano-Graphene and Its Derivatives for Fabrication of Flexible Electronic Devices: A Quick Review

Natural Fibers as Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials – A Review

Geometrical Characterization of Wire-and-Arc Additive Manufactured Steel Element

Plasma Activated Water Generation and its Application in Agriculture

Development of Advanced Electrode Materials on Porous Silicon for Micropower Formic Acid-Oxygen Fuel Cells 

Water Management within Tragacanth gum-g-polyitaconic Acid Hydrogels

Synthesis and Characterization of Humic Acid-coated Fe3O4 Nanoparticles for Methylene Blue Adsorption Activity

Synthesis and characterization of thermally stable flame retardant thermoplastic polyphosphazenes

Synthesis of Rod-coil Molecules bearing Oligo-Phenylene Vinylene Motifs: Effect of PEO Chain Lengths on the Evolution of Nanostructures Morphology and their Photophysical Properties

Dielectric Properties of Cu based Polymeric Composites in X-band of Microwave Frequency

Critical Association Concentration of Dansyl-Poly (acrylic acid) Synthetized by Redox Polymerization Followed by an Esterification in Aqueous Solution: Spectrophotometric and Tensiometric Studies

Influence of Iron Doping on Structural and Optical Properties of Nickel Oxide Nanoparticles

Upcoming Congress

Knowledge Experience at Sea TM