Deformation Texture Modelling by Mean-Field and Full-Field Approaches

Jurij J. Sidor1,* and Qingge Xie2

1Eötvös Loránd University (ELTE), Faculty of Informatics, Savaria Institute of Technology, Károlyi Gáspár tér 4, Szombathely, 9700, Hungary

2Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing, 100083, China

Adv. Mater. Lett., 2019, 10 (9), pp 643-650

DOI: 10.5185/amlett.2019.0030

Publication Date (Web): Jun 18, 2019

E-mail: js@inf.elte.hu

Abstract


An analysis on modeling the rolling textures in Al alloy by means of mean-field and full-field approaches is presented in the current contribution. The mean-field simulations were performed by the Taylor-type homogenization approach, called Alamel model, which takes into account a short-range interaction between the grains in a polycrystalline system. In order to account for the intra-grain deformation phenomena, the crystal elasto-visco-plastic finite-element model was employed. The method of strain path approximation on the quality of texture prediction was likewise discussed. The deformation history was calculated with different analytical approaches and a finite element model with isotropic mechanical properties, which accounted for various degree of accuracy. It was shown that the analytical approximations accoupled with the crystal plasticity model employed are capable of carrying out texture simulations close to the one performed with the crystal plasticity model with the deformation history obtained by means of the finite element model. Comparison of modelled and experimental textures as well as analysis of qualitative texture indicators suggest that an improvement in texture simulation can be achieved by considering heterogeneities of deformation flow across the thickness and taking into account the inhomogeneous nature of deformation inside each grain. © VBRI Press.

Keywords

Al alloy, Texture, Crystal plasticity modelling, Alamel model

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM