Growth, Linear and Nonlinear Optical Studies of D-Tartaric Acid Crystal

M. Esthaku Peter*1, 2, Getahun Leliso1, Seblewongel Getachew3, Betelhem Alemu4, Tirngo Abay5, Eleni Binalfeus6

1Department of Physics, Dilla University, Dilla, Ethiopia

2Department of Physics, Easwari Engineering College, Chennai, India

3Department of Physics, Salale University, Ethiopia

4Department of Physics, Bonga University, Ethiopia

5Department of Physics, Raya University, Ethiopia

6Department of Physics, Enjibara University, Ethiopia

Adv. Mater. Lett., 2019, 10 (9), pp 651-655

DOI: 10.5185/amlett.2019.0028

Publication Date (Web): Jun 18, 2019

Email: mesthakupeter@gmail.com

Abstract


A single crystal of D-Tartaric acid, a stereoisomer of tartaric acid, has been grown by a slow solvent evaporation technique. Good crystals to be used for optical testing were harvested after multiple recrystallizations, whose maximum size is 30x20x4mm3. In view of finding second harmonic generation efficiency and properties supporting for a nonlinear optical device, the grown crystals were subjected to various characterizations. Firstly, the compound was confirmed by single crystal and powder X-ray diffraction analysis and thereafter further studies were undertaken. Various possible functional groups available in the grown crystalline compound were identified using Fourier transform infrared analysis and reported. The second harmonic generation, a nonlinear optical property of a crystal, was studied and compared with standard KDP crystal. The percentage of linear optical transmittance in the ultraviolet, visible and infrared radiation of wavelength ranging from 200 to 1100 nm was studied and explained in detail. Thermal studies such as Thermogravimetric and Differential thermal analysis were carried out to find the thermal stability of the crystalline material. Vicker’s microhardness testing was made on the as-grown crystalline surface to find the surface hardness, yield strength and other related mechanical properties of the crystal. © VBRI Press.

Keywords

X-ray diffraction, Growth from solutions, Organic compounds, Nonlinear optic materials, Harmonic generators.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM