Cover Page September-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 9, Pages 637-642, September 2019
About Cover

Materials modelling has established itself as an essential analysis not only to study the insight of complex physical phenomena appearing in the soft or condensed matter but also to realize the emerging trend of 'reverse engineering' as a keystone for technological innovations. The cover photo of this September 2019 issue describes the bio interaction between graphene and enzyme protein for bioelectronics applicable in battery, fuel cell and biosensing applications and dedicated to celebrating the 6th anniversary of Nobel Prize in Chemistry on “Multiscale models for complex chemical systems”.

Functionalized Nano Carbon for excellent Microwave Absorption at GHz Frequency

Avanish Kumar Srivastava, Bhumika Samaria, Smita Soni, Anuj Shukla*, Umesh Kumar

Material Development Group, Defence Laboratory, Jodhpur 342011, India

Adv. Mater. Lett., 2019, 10 (9), pp 637-642

DOI: 10.5185/amlett.2019.0027

Publication Date (Web): May 20, 2019

Corresponding author: Tel: (+91) 2912511363; Fax: (+91) 2912510260; E-mail:;


In the present study, nano carbon (NC) was chemically functionalized by refluxing in nitric acid for 6 h to form acid functionalized NC (FNC). TEM, XRD, FTIR, Raman, N2 BET surface area and dc electrical conductivity characterizations confirm the functionalization and formation of surface oxygen functional groups, which in turn increase the hydrophilicity of FNC, thus rendering them solution processable. The basic framework of NC did not get change as confirmed from different characterization techniques. FNC were dispersed in an epoxy matrix by a solution blending method with different FNC loading levels (5, 7.0, 10, 12& 15 wt %). The FNC/epoxy composites were studied for electromagnetic properties in 8-12 GHz. Electromagnetic properties such as real and imaginary part of dielectric permittivity found increasing with increase of FNC loading. Reflection loss result of 10wt % of FNC composite shows RL >10 dB from 9.5 to12.0 GHz (absorption bandwidth~ 2.5 GHz) and effective absorption bandwidth (RL> 5dB) ~ 7 GHz (8-15 GHz).  As a kind of potential microwave absorption material, the FNC composites are light weight and show excellent microwave absorbing ability. © VBRI Press.


Nano carbon, composite, dielectric loss, microwave absorption, lightweight absorber.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM