Cover Page December-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 12, Pages 874-879, December 2019
About Cover

IAAM recognizes the contribution of scientists towards the advancement of materials to global excellence with the ‘Researcher of the year’ award every year. Prof. Zhong Lin (Z. L.) Wang from Georgia Tech., USA and Prof. T. Venkatesan from Nano Core Research Center at National University of Singapore were recognized with this prestigious award in 2017 and 2018, respectively. This year, the award is presented to eminent physicist Prof. Enge Wang, Vice President of Chinese Academy of Sciences (CAS) and President Emeritus of Peking University, China, for his contribution towards the nanotechnology research and innovations. Advanced Materials Letters feels very honored and privileged to confer upon him the ‘Researcher of the Year’ award and dedicate the cover photo of December 2019 issue for his several years of diligence and uncountable achievements.


Synthesis, Structural Characterization, Dielectric and Piezoelectric Properties of Multiferroic Double-perovskite Bi2FeMnO6 Ceramics

Peng Song, Zhipeng Pei, Heng Wu, Yao Lu, Weiren Xia, Xinhua Zhu

National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China

Adv. Mater. Lett., 2019, 10 (12), pp 874-879

DOI: 10.5185/amlett.2019.0008

Publication Date (Web): May 18, 2019

Corresponding author: E-mail: xhzhu@nju.edu.cn

Abstract

Double-perovskite structured multiferroic Bi2FeMnO6 (BFMO) ceramics synthesized via solid-state reaction route at 880oC for 3 h, crystallized in a distorted rhombohedral structure with R3c space group. Their lattice parameters in the hexagonal system were determined to be a = 5.571 Å and c = 13.191 Å. SEM images show that the BFMO ceramic grains exhibit spherical morphology with an average size of 6.70 mm. Their atomic ratio of Bi:Fe:Mn was determined to be 2.07:1.02:1.00, close to the nominal value of 2:1:1. Raman spectra have verified the vibrational frequencies in the BFMO ceramics, and only 11 Raman active modes are observed. The less observed Raman modes in the BFMO ceramics compared with the theoretical group analyses, can be ascribed to the small correlation field splitting of the ceramic samples due to their polycrystalline nature. BFMO ceramics exhibit almost frequency-independent dielectric behavior in a frequency range of 500 - 106 Hz at room temperature. Their dielectric constant and dielectric loss were measured to be 700 and 0.03 at 106 Hz, respectively. The piezoelectric moduli d33 of the poled BFMO ceramics was measured to be 56 pC/N, which is two times larger than that reported for BiFeO3 thin film (d33 ≅ 25 pC/N). © VBRI Press.

Keywords

Double perovskite oxides, Bi2FeMnO6 multiferroic ceramics, Raman spectra, dielectric and piezoelectric properties, microstructural characterization

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM