Dual Effect of Light Irradiation for Surface Relief Gratings Formation in Se-rich Ge-Se Thin Films

Tyler Nichol1, Janis Teteris2, Mara Reinfelde2, Maria Mitkova1,*

1Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725-2075, USA  

2Institute of Solid State Physics, University of Latvia, Riga, Latvia

Adv. Mater. Lett., 2019, 10 (12), pp 868-873

DOI: 10.5185/amlett.2019.0012

Publication Date (Web): May 16, 2019

Corresponding author: mariamitkova@boisestate.edu

Abstract


Relief surface formation as a result of light irradiation is one important property of chalcogenide glasses which gives rise of number of applications. Understanding the nature of the process is an essential step towards optimization of the relief images obtained. This work depicts the mechanisms for surface relief grating formation in Ge-Se thin films exposed to diffracted light. A dependence on the period of the illumination source is revealed, which correlates with the composition of the thin film material. Raman spectroscopy, Energy Dispersive Spectroscopy (EDS), and Atomic Force Microscopy (AFM) were used to analyze the films. The results point towards a dual effect of light irradiation leading to mass transport and structural changes, which results in a surface relief formation. © VBRI Press.

Keywords

Chalcogenide glass, thin film, surface relief grating, diffraction, mass transport.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM