Influence of Iron Doping on Structural and Optical Properties of Nickel Oxide Nanoparticles

Nashiruddin Ahammed1*, M. Mehedi Hassan 

1Department of Physics, Govt. General Degree College, Muragachha, Nadia, W.B. 741154, India

2Sensor and Actuator Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, W.B. 700032, India

DOI: 10.5185/amlett.2019.0004

Publication Date (Web): Mar 11, 2019

E-mail: nashiruddin73@gmail.com

Abstract

In this article, auto combustion prepared Ni1-xFexO (0≤x≤0.10) nanoparticles (NPs) have been investigated for their structural, morphological and optical properties. X-ray diffraction (XRD) studies reveal that all Fe doped NiO samples crystallize in single phase without any impurity. The crystallite size monotonically decreases from 20 nm to 10 nm with increasing Fe substitution. Transmission Electron Microscope images represent that the synthesized NiO NPs with size around 28 nm. A red shift in UV-Vis spectra indicates that band gap can be tuned by Fe doping from 3.76 eV to 2.51 eV because of the upward shifting of t2g level.  The broad transmittance peak in Fourier transform infra-red spectra at 500 cm-1 is assigned to Ni–O stretching vibration mode. Differential scanning calorimetry curve revealed that the transition at 250 oC was exothermic because of structural relaxation. 

Keywords

Nickel oxide nanoparticle, XRD, TEM, band gap.

Current Issue

Artificial intelligence and machine learning empowering the mass medicine


Piezo-therapy in cancer: Current research and perspectives


Magnetic microwires for sensor applications


A fundamental study on the mechanistic impact of repeated de- and rehydration of Ca(OH)2 on thermochemical cycling in technical scale


Fabrication and characterization of nano-bridge Josephson junction based on Fe0.94Te0.45Se0.55 thin film


Riboflavin-UVA gelatin crosslinking: Design of a biocompatible and thermo-responsive biomaterial with enhanced mechanical properties for tissue engineering


Broadband and fast photodetectors based on multilayer p-MoTe2/n-WS2 heterojunction with graphene electrodes


Ionic liquid [BMIM][Cl] immobilized on cellulose fibers from pineapple leaves for desulphurization of fuels


Synthesis and role of co-dopants (alkaline earth divalents and halides) on the photoluminescence of Eu2+ doped BaAl2O4 phosphor


Metal oxide (V2O5) incorporated fly ash based geopolymer for better sustainable engineering composites


Highly efficient storage of solar gains using aluminum foam heat exchangers  


Green fabrication of zinc oxide nanospheres by aspidopterys cordata for effective antioxidant and antibacterial activity


Effect of diamantane on the thermal stability of cryomilled aluminum alloy


Previous issues

Tech-footprints for virtual medicine

Advances in corrosion inhibition materials and technologies: A review

Ring models of atoms, molecules and nanomaterials

(FeCo/Ppy@C): Pt-free FeCo-Polypyrrole Nanocomposites Supported on Porous Carbon for Electrochemical Application

Physical and mechanical properties of microwave absorber material containing micro and nano barium ferrite  

Formation of nano-dispersed Cu particles during aging of a Fe-Cu alloy and dislocation effect

Preparation of novel tragacanth gum-entrapped lecithin nanogels 

Modulation of optical properties with multilayer thickness in antimonene and indiene   

Bi-doped CH3NH3PbI3 effective masses and electronic properties research: A theoretical study using VASP

Novel synthesis of Pd nanosheets used as highly sensitive SERS substrate for trace fluorescent dye detection 

Silver nanoparticles mediated by extract of Guar plant (Cyamopsis tetragonoloba), and evaluation of their photocatalytic and antibacterial properties

Study of TiO2 nanofibers prepared by electrospinning technique

Determination of leachate pollution content in soil using in-situ dielectric measurement  

Upcoming Congress

Knowledge Experience at Sea TM