Influence of Iron Doping on Structural and Optical Properties of Nickel Oxide Nanoparticles

Nashiruddin Ahammed1*, M. Mehedi Hassan 

1Department of Physics, Govt. General Degree College, Muragachha, Nadia, W.B. 741154, India

2Sensor and Actuator Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, W.B. 700032, India

DOI: 10.5185/amlett.2019.0004

Publication Date (Web): Mar 11, 2019

E-mail: nashiruddin73@gmail.com

Abstract

In this article, auto combustion prepared Ni1-xFexO (0≤x≤0.10) nanoparticles (NPs) have been investigated for their structural, morphological and optical properties. X-ray diffraction (XRD) studies reveal that all Fe doped NiO samples crystallize in single phase without any impurity. The crystallite size monotonically decreases from 20 nm to 10 nm with increasing Fe substitution. Transmission Electron Microscope images represent that the synthesized NiO NPs with size around 28 nm. A red shift in UV-Vis spectra indicates that band gap can be tuned by Fe doping from 3.76 eV to 2.51 eV because of the upward shifting of t2g level.  The broad transmittance peak in Fourier transform infra-red spectra at 500 cm-1 is assigned to Ni–O stretching vibration mode. Differential scanning calorimetry curve revealed that the transition at 250 oC was exothermic because of structural relaxation. 

Keywords

Nickel oxide nanoparticle, XRD, TEM, band gap.

Current Issue

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare


Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization


Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system


Innovative Graphene-PDMS sensors for aerospace applications 


Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers


Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates


Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature


Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells


Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity


Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process


Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries


Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration


Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption


Previous issues

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Upcoming Congress

Knowledge Experience at Sea TM